#!/usr/bin/env python def stirling1 ( n, m ): #*****************************************************************************80 # ## STIRLING1 computes the Stirling numbers of the first kind. # # Discussion: # # The absolute value of the Stirling number S1(N,M) gives the number # of permutations on N objects having exactly M cycles, while the # sign of the Stirling number records the sign (odd or even) of # the permutations. For example, there are six permutations on 3 objects: # # A B C 3 cycles (A) (B) (C) # A C B 2 cycles (A) (BC) # B A C 2 cycles (AB) (C) # B C A 1 cycle (ABC) # C A B 1 cycle (ABC) # C B A 2 cycles (AC) (B) # # There are # # 2 permutations with 1 cycle, and S1(3,1) = 2 # 3 permutations with 2 cycles, and S1(3,2) = -3, # 1 permutation with 3 cycles, and S1(3,3) = 1. # # Since there are N! permutations of N objects, the sum of the absolute # values of the Stirling numbers in a given row, # # sum ( 1 <= I <= N ) abs ( S1(N,I) ) = N! # # First terms: # # N/M: 1 2 3 4 5 6 7 8 # # 1 1 0 0 0 0 0 0 0 # 2 -1 1 0 0 0 0 0 0 # 3 2 -3 1 0 0 0 0 0 # 4 -6 11 -6 1 0 0 0 0 # 5 24 -50 35 -10 1 0 0 0 # 6 -120 274 -225 85 -15 1 0 0 # 7 720 -1764 1624 -735 175 -21 1 0 # 8 -5040 13068 -13132 6769 -1960 322 -28 1 # # Recursion: # # S1(N,1) = (-1)^(N-1) * (N-1)! for all N. # S1(I,I) = 1 for all I. # S1(I,J) = 0 if I < J. # # S1(N,M) = S1(N-1,M-1) - (N-1) * S1(N-1,M) # # Properties: # # sum ( 1 <= K <= M ) S2(I,K) * S1(K,J) = Delta(I,J) # # X_N = sum ( 0 <= K <= N ) S1(N,K) X^K # where X_N is the falling factorial function. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows of the table. # # Input, integer M, the number of columns of the table. # # Output, integer S1(N,M), the Stirling numbers of the first kind. # import numpy as np s1 = np.zeros ( ( n, m ) ) if ( n <= 0 ): return s1 if ( m <= 0 ): return s1 s1[0,0] = 1 for j in range ( 1, m ): s1[0,j] = 0 for i in range ( 1, n ): s1[i,0] = - i * s1[i-1,0] for j in range ( 1, m ): s1[i,j] = s1[i-1,j-1] - i * s1[i-1,j] return s1 def stirling1_test ( ): #*****************************************************************************80 # ## STIRLING1_TEST tests STIRLING1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # import numpy as np from i4mat_print import i4mat_print print '' print 'STIRLING1_TEST:' print ' Test STIRLING1, which returns Stirling numbers of the first kind.' m = 8 n = 8 s1 = stirling1 ( m, n ) i4mat_print ( m, n, s1, ' Stirling1 matrix:' ) print '' print 'STIRLING1_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) stirling1_test ( ) timestamp ( )