#!/usr/bin/env python def stirling2 ( n, m ): #*****************************************************************************80 # ## STIRLING2 computes the Stirling numbers of the second kind. # # Discussion: # # S2(N,M) represents the number of distinct partitions of N elements # into M nonempty sets. For a fixed N, the sum of the Stirling # numbers S2(N,M) is represented by B(N), called "Bell's number", # and represents the number of distinct partitions of N elements. # # For example, with 4 objects, there are: # # 1 partition into 1 set: # # (A,B,C,D) # # 7 partitions into 2 sets: # # (A,B,C) (D) # (A,B,D) (C) # (A,C,D) (B) # (A) (B,C,D) # (A,B) (C,D) # (A,C) (B,D) # (A,D) (B,C) # # 6 partitions into 3 sets: # # (A,B) (C) (D) # (A) (B,C) (D) # (A) (B) (C,D) # (A,C) (B) (D) # (A,D) (B) (C) # (A) (B,D) (C) # # 1 partition into 4 sets: # # (A) (B) (C) (D) # # So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. # # # First terms: # # N/M: 1 2 3 4 5 6 7 8 # # 1 1 0 0 0 0 0 0 0 # 2 1 1 0 0 0 0 0 0 # 3 1 3 1 0 0 0 0 0 # 4 1 7 6 1 0 0 0 0 # 5 1 15 25 10 1 0 0 0 # 6 1 31 90 65 15 1 0 0 # 7 1 63 301 350 140 21 1 0 # 8 1 127 966 1701 1050 266 28 1 # # Recursion: # # S2(N,1) = 1 for all N. # S2(I,I) = 1 for all I. # S2(I,J) = 0 if I < J. # # S2(N,M) = M * S2(N-1,M) + S2(N-1,M-1) # # Properties: # # sum ( 1 <= K <= M ) S2(I,K) * S1(K,J) = Delta(I,J) # # X^N = sum ( 0 <= K <= N ) S2(N,K) X_K # where X_K is the falling factorial function. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows of the table. # # Input, integer M, the number of columns of the table. # # Output, integer S2(N,M), the Stirling numbers of the second kind. # import numpy as np s2 = np.zeros ( ( n, m ) ) if ( n <= 0 ): return s2 if ( m <= 0 ): return s2 s2[0,0] = 1 for j in range ( 1, m ): s2[0,j] = 0 for i in range ( 1, n ): s2[i,0] = 1 for j in range ( 1, m ): s2[i,j] = ( j + 1 ) * s2[i-1,j] + s2[i-1,j-1] return s2 def stirling2_test ( ): #*****************************************************************************80 # ## STIRLING2_TEST tests STIRLING2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # import numpy as np from i4mat_print import i4mat_print print '' print 'STIRLING2_TEST:' print ' Test STIRLING2, which returns Stirling numbers of the second kind.' m = 8 n = 8 s2 = stirling2 ( m, n ) i4mat_print ( m, n, s2, ' Stirling2 matrix:' ) print '' print 'STIRLING2_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) stirling2_test ( ) timestamp ( )