#!/usr/bin/env python def tau ( n ): #*****************************************************************************80 # ## TAU returns the value of TAU(N), the number of distinct divisors of N. # # Discussion: # # TAU(N) is the number of divisors of N, including 1 and N. # # First values: # # N TAU(N) # # 1 1 # 2 2 # 3 2 # 4 3 # 5 2 # 6 4 # 7 2 # 8 4 # 9 3 # 10 4 # 11 2 # 12 6 # 13 2 # 14 4 # 15 4 # 16 5 # 17 2 # 18 6 # 19 2 # 20 6 # # Formula: # # If the prime factorization of N is # # N = P1^E1 * P2^E2 * ... * PM^EM, # # then # # TAU(N) = ( E1 + 1 ) * ( E2 + 1 ) * ... * ( EM + 1 ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the value to be analyzed. N must be 1 or # greater. # # Output, integer TAUN, the value of TAU(N). But if N is 0 or # less, TAUN is returned as 0, a nonsense value. If there is # not enough room for factoring, TAUN is returned as -1. # from i4_factor import i4_factor if ( n <= 0 ): value = 0 return value if ( n == 1 ): value = 1 return value # # Factor N. # nfactor, factor, power, nleft = i4_factor ( n ) if ( nleft != 1 ): print '' print 'TAU - Fatal error!' print ' Not enough factorization space.' value = 1 for i in range ( 0, nfactor ): value = value * ( power[i] + 1 ) return value def tau_test ( ): #*****************************************************************************80 # ## TAU_TEST tests TAU. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # from tau_values import tau_values print '' print 'TAU_TEST' print ' TAU computes the TAU function.' print '' print ' N Exact TAU(N)' n_data = 0 while ( True ): n_data, n, c1 = tau_values ( n_data ) if ( n_data == 0 ): break c2 = tau ( n ) print ' %8d %12d %12d' % ( n, c1, c2 ) print '' print 'TAU_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) tau_test ( ) timestamp ( )