#!/usr/bin/env python def zeckendorf ( n ): #*****************************************************************************80 # ## ZECKENDORF produces the Zeckendorf decomposition of a positive integer. # # Discussion: # # Zeckendorf proved that every positive integer can be represented # uniquely as the sum of non-consecutive Fibonacci numbers. # # N = sum ( 1 <= I <= M ) F_LIST(I) # # Example: # # N Decomposition # # 50 34 + 13 + 3 # 51 34 + 13 + 3 + 1 # 52 34 + 13 + 5 # 53 34 + 13 + 5 + 1 # 54 34 + 13 + 5 + 2 # 55 55 # 56 55 + 1 # 57 55 + 2 # 58 55 + 3 # 59 55 + 3 + 1 # 60 55 + 5 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the positive integer to be decomposed. # # Output, integer M, the number of parts in the decomposition. # # Output, integer I_LIST(M), the index of the Fibonacci numbers. # # Output, integer F_LIST(M), the value of the Fibonacci numbers. # import numpy as np from fibonacci_direct import fibonacci_direct from fibonacci_floor import fibonacci_floor m = 0 i_list = [] # # Extract a sequence of Fibonacci numbers. # while ( 0 < n ): [ f, i ] = fibonacci_floor ( n ) i_list.append ( i ) m = m + 1 n = n - f # # Replace any pair of consecutive indices ( I, I-1 ) by I+1. # for i in range ( m - 1, 0, -1 ): if ( i_list[i-1] == i_list[i] + 1 ): i_list[i-1] = i_list[i-1] + 1 for j in range ( i, m - 1 ): i_list[j] = i_list[j+1] m = m - 1 i_list[m] = 0 # # Fill in the actual values of the Fibonacci numbers. # f_list = np.zeros ( m ) for i in range ( 0, m ): f_list[i] = fibonacci_direct ( i_list[i] ) return m, i_list, f_list def zeckendorf_test ( ): #*****************************************************************************80 # ## ZECKENDORF_TEST tests ZECKENDORF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # print '' print 'ZECKENDORF_TEST' print ' ZECKENDORF computes the Zeckendorf decomposition of' print ' an integer N into nonconsecutive Fibonacci numbers.' print '' print ' N Sum M Parts' print '' for n in range ( 1, 101 ): m, i_list, f_list = zeckendorf ( n ) print ' %3d' % ( n ), for j in range ( 0, m ): print' %d' % ( f_list[j] ), print '' print '' print 'ZECKENDORF_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) zeckendorf_test ( ) timestamp ( )