#!/usr/bin/env python # def zernike_poly ( m, n, rho ): #*****************************************************************************80 # ## ZERNIKE_POLY evaluates a Zernike polynomial at RHO. # # Discussion: # # This routine uses the facts that: # # *) R^M_N = 0 if M < 0, or N < 0, or N < M. # *) R^M_M = RHO^M # *) R^M_N = 0 if mod ( N - M, 2 ) = 1. # # and the recursion: # # R^M_(N+2) = A * [ ( B * RHO^2 - C ) * R^M_N - D * R^M_(N-2) ] # # where # # A = ( N + 2 ) / ( ( N + 2 )^2 - M^2 ) # B = 4 * ( N + 1 ) # C = ( N + M )^2 / N + ( N - M + 2 )^2 / ( N + 2 ) # D = ( N^2 - M^2 ) / N # # I wish I could clean up the recursion in the code, but for # now, I have to treat the case M = 0 specially. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Reference: # # Eric Weisstein, # "Zernike Polynomials", # CRC Concise Encyclopedia of Mathematics, # CRC Press, 1999, # QA5.W45 # # Parameters: # # Input, integer M, the upper index. # # Input, integer N, the lower index. # # Input, real RHO, the radial coordinate. # # Output, real Z, the value of the Zernike # polynomial R^M_N at the point RHO. # # # Do checks. # if ( m < 0 ): z = 0.0 return z if ( n < 0 ): z = 0.0 return z if ( n < m ): z = 0.0 return z if ( ( ( n - m ) % 2 ) == 1 ): z = 0.0 return z zm2 = 0.0 z = rho ** m if ( m == 0 ): if ( n == 0 ): return z zm2 = z z = 2.0 * rho * rho - 1.0 for nn in range ( m + 2, n - 1, 2 ): a = float ( nn + 2 ) / float ( ( nn + 2 ) * ( nn + 2 ) - m * m ) b = 4.0 * float ( nn + 1 ) c = float ( ( nn + m ) * ( nn + m ) ) / float ( nn ) \ + float ( ( nn - m + 2 ) * ( nn - m + 2 ) ) / float ( nn + 2 ) d = float ( nn * nn - m * m ) / float ( nn ) zp2 = a * ( ( b * rho * rho - c ) * z - d * zm2 ) zm2 = z z = zp2 else: for nn in range ( m, n - 1, 2 ): a = float ( nn + 2 ) / float ( ( nn + 2 ) * ( nn + 2 ) - m * m ) b = 4.0 * float ( nn + 1 ) c = float ( ( nn + m ) * ( nn + m ) ) / float ( nn ) \ + float ( ( nn - m + 2 ) * ( nn - m + 2 ) ) / float ( nn + 2 ) d = float ( nn * nn - m * m ) / float ( nn ) zp2 = a * ( ( b * rho * rho - c ) * z - d * zm2 ) zm2 = z z = zp2 return z def zernike_poly_test ( ): #*****************************************************************************80 # ## ZERNIKE_POLY_TEST tests ZERNIKE_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from r8poly_value_horner import r8poly_value_horner from zernike_poly_coef import zernike_poly_coef print '' print 'ZERNIKE_POLY_TEST' print ' ZERNIKE_POLY evaluates a Zernike polynomial directly.' print '' print ' Table of polynomial coefficients:' print '' print ' N M' print '' for n in range ( 0, 6 ): print '' for m in range ( 0, n + 1 ): c = zernike_poly_coef ( m, n ) print ' %2d %2d' % ( n, m ), for i in range ( 0, n + 1 ): print ' %7f' % ( c[i] ), print '' rho = 0.987654321 print '' print ' Z1: Compute polynomial coefficients,' print ' then evaluate by Horner\'s method;' print ' Z2: Evaluate directly by recursion.' print '' print ' N M Z1 Z2' print '' for n in range ( 0, 6 ): print '' for m in range ( 0, n + 1 ): c = zernike_poly_coef ( m, n ) z1 = r8poly_value_horner ( n, c, rho ) z2 = zernike_poly ( m, n, rho ) print ' %2d %2d %16f %16f' % ( n, m, z1, z2 ) print '' print 'ZERNIKE_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) zernike_poly_test ( ) timestamp ( )