#!/usr/bin/env python # def zernike_poly_coef ( m, n ): #*****************************************************************************80 # ## ## ZERNIKE_POLY_COEF: coefficients of a Zernike polynomial. # # Discussion: # # With our coefficients stored in COEFS(1:N+1), the # radial function R^M_N(RHO) is given by # # R^M_N(RHO) = COEFS(1) # + COEFS(2) * RHO # + COEFS(3) * RHO^2 # + ... # + COEFS(N+1) * RHO^N # # and the odd and even Zernike polynomials are # # Z^M_N(RHO,PHI,odd) = R^M_N(RHO) * sin(PHI) # Z^M_N(RHO,PHI,even) = R^M_N(RHO) * cos(PHI) # # The first few "interesting" values of R are: # # R^0_0 = 1 # # R^1_1 = RHO # # R^0_2 = 2 * RHO^2 - 1 # R^2_2 = RHO^2 # # R^1_3 = 3 * RHO^3 - 2 * RHO # R^3_3 = RHO^3 # # R^0_4 = 6 * RHO^4 - 6 * RHO^2 + 1 # R^2_4 = 4 * RHO^4 - 3 * RHO^2 # R^4_4 = RHO^4 # # R^1_5 = 10 * RHO^5 - 12 * RHO^3 + 3 * RHO # R^3_5 = 5 * RHO^5 - 4 * RHO^3 # R^5_5 = RHO^5 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 October 2005 # # Author: # # John Burkardt # # Reference: # # Eric Weisstein, # Zernike Polynomials, # CRC Concise Encyclopedia of Mathematics, # CRC Press, 1998, # QA5.W45 # # Parameters: # # Input, integer M, N, the parameters of the polynomial. # Normally, 0 <= M <= N and 0 <= N. # # Output, real C(1:N+1), the coefficients of the polynomial. # import numpy as np from r8_choose import r8_choose c = np.zeros ( n + 1 ) if ( n < 0 ): return c if ( m < 0 ): return c if ( n < m ): return c if ( ( ( m - n ) % 2 ) == 1 ): return c nm_plus = ( ( m + n ) // 2 ) nm_minus = ( ( n - m ) // 2 ) c[n] = r8_choose ( n, nm_plus ) for l in range ( 0, nm_minus ): c[n-2*l-2] = - float ( ( nm_plus - l ) * ( nm_minus - l ) ) * c[n-2*l] \ / float ( ( n - l ) * ( l + 1 ) ) return c def zernike_poly_coef_test ( ): #*****************************************************************************80 # ## ZERNIKE_POLY_COEF_TEST tests ZERNIKE_POLY_COEF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from r8poly_print import r8poly_print n = 5 print '' print 'ZERNIKE_POLY_COEF_TEST' print ' ZERNIKE_POLY_COEF determines the Zernike' print ' polynomial coefficients.' for m in range ( 0, n + 1 ): c = zernike_poly_coef ( m, n ) r8poly_print ( n, c, ' Zernike polynomial:' ) print '' print 'ZERNIKE_POLY_COEF_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) zernike_poly_coef_test ( ) timestamp ( )