#!/usr/bin/env python def mono_value ( m, n, f, x ): #*****************************************************************************80 # ## MONO_VALUE evaluates a monomial. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 October 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the spatial dimension. # # Input, integer N, the number of evaluation points. # # Input, integer F[M], the exponents of the monomial. # # Input, real X[M*N], the coordinates of the evaluation points. # # Output, real MONO_VALUE[N], the value of the monomial at X. # import numpy as np v = np.zeros ( n, dtype = np.float64 ) for j in range ( 0, n ): v[j] = 1.0 for i in range ( 0, m ): v[j] = v[j] * ( x[i+j*m] ** f[i] ) return v def mono_value_test ( ): #*****************************************************************************80 # ## MONO_VALUE_TEST tests MONO_VALUE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 October 2014 # # Author: # # John Burkardt # from mono_print import mono_print from mono_upto_random import mono_upto_random import numpy as np m = 3 nx = 2 x = np.array ( [ 1.0, 2.0, 3.0, -2.0, 4.0, 1.0 ], dtype = np.float64 ) print '' print 'MONO_VALUE_TEST' print ' MONO_VALUE evaluates a monomial.' n = 6 print '' print ' Let M = %d' % ( m ) print ' N = %d' % ( n ) seed = 123456789 test_num = 5 for test in range ( 0, test_num ): f, rank, seed = mono_upto_random ( m, n, seed ) print '' mono_print ( m, f, ' M(X) = ' ) v = mono_value ( m, nx, f, x ) for j in range ( 0, nx ): print ' M(%g,%g,%g) = %g' % ( x[0+j*m], x[1+j*m], x[2+j*m], v[j] ) print '' print 'MONO_VALUE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) mono_value_test ( ) timestamp ( )