#! /usr/bin/env python # def chebyshev1_compute ( n ): #*****************************************************************************80 # ## CHEBYSHEV1_COMPUTE computes a Gauss-Chebyshev type 1 quadrature rule. # # Discussion: # # The integral: # # Integral ( -1 <= X <= 1 ) F(X) / sqrt ( 1 - x^2 ) dX # # The quadrature rule: # # Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2010 # # Author: # # John Burkardt # # Reference: # # Philip Davis, Philip Rabinowitz, # Methods of Numerical Integration, # Second Edition, # Dover, 2007, # ISBN: 0486453391, # LC: QA299.3.D28. # # Parameters: # # Input, integer N, the order. # N must be greater than 0. # # Output, real X(N), the abscissas. # # Output, real W(N), the weights. # import numpy as np x = np.zeros ( n ) w = np.zeros ( n ) for i in range ( 0, n ): w[i] = np.pi / float ( n ) for i in range ( 0, n ): x[i] = np.cos ( np.pi * float ( 2 * n - 1 - 2 * i ) / float ( 2 * n ) ) return x, w def chebyshev1_compute_test ( ): #*****************************************************************************80 # ## CHEBYSHEV1_COMPUTE_TEST tests CHEBYSHEV1_COMPUTE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # print '' print 'CHEBYSHEV1_COMPUTE_TEST' print ' CHEBYSHEV1_COMPUTE computes' print ' a Chebyshev Type 1 quadrature rule over [-1,1].' print '' print ' Index X W' print '' for n in range ( 1, 11 ): [ x, w ] = chebyshev1_compute ( n ) print '' for i in range ( 0, n ): print ' %2d %24.16g %24.16g' % ( i, x[i], w[i] ) # # Terminate. # print '' print 'CHEBYSHEV1_COMPUTE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) chebyshev1_compute_test ( ) timestamp ( )