#! /usr/bin/env python # def fejer1_compute ( n ): #*****************************************************************************80 # ## FEJER1_COMPUTE computes a Fejer type 1 quadrature rule. # # Discussion: # # This method uses a direct approach. The paper by Waldvogel # exhibits a more efficient approach using Fourier transforms. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # # Reference: # # Philip Davis, Philip Rabinowitz, # Methods of Numerical Integration, # Second Edition, # Dover, 2007, # ISBN: 0486453391, # LC: QA299.3.D28. # # Walter Gautschi, # Numerical Quadrature in the Presence of a Singularity, # SIAM Journal on Numerical Analysis, # Volume 4, Number 3, 1967, pages 357-362. # # Joerg Waldvogel, # Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, # BIT Numerical Mathematics, # Volume 43, Number 1, 2003, pages 1-18. # # Parameters: # # Input, integer N, the order. # # Output, real X(N), the abscissas. # # Output, real W(N), the weights. # import numpy as np theta = np.zeros ( n ) for i in range ( 0, n ): theta[i] = float ( 2 * n - 1 - 2 * i ) * np.pi / float ( 2 * n ) x = np.zeros ( n ) for i in range ( 0, n ): x[i] = np.cos ( theta[i] ) w = np.zeros ( n ) for i in range ( 0, n ): w[i] = 1.0 jhi = ( n // 2 ) for j in range ( 0, jhi ): angle = 2.0 * float ( j + 1 ) * theta[i] w[i] = w[i] - 2.0 * np.cos ( angle ) / float ( 4 * ( j + 1 ) ** 2 - 1 ) for i in range ( 0, n ): w[i] = 2.0 * w[i] / float ( n ) return x, w def fejer1_compute_test ( ): #*****************************************************************************80 # ## FEJER1_COMPUTE_TEST tests FEJER1_COMPUTE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # print '' print 'FEJER1_COMPUTE_TEST' print ' FEJER1_COMPUTE computes the abscissas and weights' print ' of a Fejer type 1 quadrature rule.' print '' print ' Order W X' print '' for n in range ( 1, 11 ): x, w = fejer1_compute ( n ) print '' print ' %8d' % ( n ) for i in range ( 0, n ): print ' %12g %12g' % ( w[i], x[i] ) # # Terminate. # print '' print 'FEJER1_COMPUTE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fejer1_compute_test ( ) timestamp ( )