#! /usr/bin/env python # def fejer1_set ( n ): #*****************************************************************************80 # ## FEJER1_SET sets abscissas and weights for Fejer type 1 quadrature. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # # Reference: # # Philip Davis, Philip Rabinowitz, # Methods of Numerical Integration, # Second Edition, # Dover, 2007, # ISBN: 0486453391, # LC: QA299.3.D28. # # Walter Gautschi, # Numerical Quadrature in the Presence of a Singularity, # SIAM Journal on Numerical Analysis, # Volume 4, Number 3, 1967, pages 357-362. # # Joerg Waldvogel, # Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, # BIT Numerical Mathematics, # Volume 43, Number 1, 2003, pages 1-18. # # Parameters: # # Input, integer N, the order. # N should be between 1 and 10. # # Output, real X(N), the abscissas. # # Output, real W(N), the weights. # import numpy as np from sys import exit if ( n == 1 ): x = np.array ( [ \ 0.000000000000000 \ ] ) w = np.array ( [ \ 2.000000000000000 \ ] ) elif ( n == 2 ): x = np.array ( [ \ -0.7071067811865475, \ 0.7071067811865475 \ ] ) w = np.array ( [ \ 1.000000000000000, \ 1.000000000000000 \ ] ) elif ( n == 3 ): x = np.array ( [ \ -0.8660254037844387, \ 0.0000000000000000, \ 0.8660254037844387 \ ] ) w = np.array ( [ \ 0.4444444444444444, \ 1.111111111111111, \ 0.4444444444444444 \ ] ) elif ( n == 4 ): x = np.array ( [ \ -0.9238795325112867, \ -0.3826834323650897, \ 0.3826834323650898, \ 0.9238795325112867 \ ] ) w = np.array ( [ \ 0.2642977396044841, \ 0.7357022603955158, \ 0.7357022603955158, \ 0.2642977396044841 \ ] ) elif ( n == 5 ): x = np.array ( [ \ -0.9510565162951535, \ -0.5877852522924730, \ 0.0000000000000000, \ 0.5877852522924731, \ 0.9510565162951535 \ ] ) w = np.array ( [ \ 0.1677812284666835, \ 0.5255521048666498, \ 0.6133333333333333, \ 0.5255521048666498, \ 0.1677812284666835 \ ] ) elif ( n == 6 ): x = np.array ( [ \ -0.9659258262890682, \ -0.7071067811865475, \ -0.2588190451025206, \ 0.2588190451025207, \ 0.7071067811865476, \ 0.9659258262890683 \ ] ) w = np.array ( [ \ 0.1186610213812358, \ 0.3777777777777778, \ 0.5035612008409863, \ 0.5035612008409863, \ 0.3777777777777778, \ 0.1186610213812358 \ ] ) elif ( n == 7 ): x = np.array ( [ \ -0.9749279121818237, \ -0.7818314824680295, \ -0.4338837391175581, \ 0.0000000000000000, \ 0.4338837391175582, \ 0.7818314824680298, \ 0.9749279121818236 \ ] ) w = np.array ( [ \ 0.08671618072672234, \ 0.2878313947886919, \ 0.3982415401308441, \ 0.4544217687074830, \ 0.3982415401308441, \ 0.2878313947886919, \ 0.08671618072672234 \ ] ) elif ( n == 8 ): x = np.array ( [ \ -0.9807852804032304, \ -0.8314696123025453, \ -0.5555702330196020, \ -0.1950903220161282, \ 0.1950903220161283, \ 0.5555702330196023, \ 0.8314696123025452, \ 0.9807852804032304 \ ] ) w = np.array ( [ \ 0.06698294569858981, \ 0.2229879330145788, \ 0.3241525190645244, \ 0.3858766022223071, \ 0.3858766022223071, \ 0.3241525190645244, \ 0.2229879330145788, \ 0.06698294569858981 \ ] ) elif ( n == 9 ): x = np.array ( [ \ -0.9848077530122080, \ -0.8660254037844385, \ -0.6427876096865394, \ -0.3420201433256685, \ 0.0000000000000000, \ 0.3420201433256688, \ 0.6427876096865394, \ 0.8660254037844387, \ 0.9848077530122080 \ ] ) w = np.array ( [ \ 0.05273664990990676, \ 0.1791887125220458, \ 0.2640372225410044, \ 0.3308451751681364, \ 0.3463844797178130, \ 0.3308451751681364, \ 0.2640372225410044, \ 0.1791887125220458, \ 0.05273664990990676 \ ] ) elif ( n == 10 ): x = np.array ( [ \ -0.9876883405951377, \ -0.8910065241883678, \ -0.7071067811865475, \ -0.4539904997395467, \ -0.1564344650402306, \ 0.1564344650402309, \ 0.4539904997395468, \ 0.7071067811865476, \ 0.8910065241883679, \ 0.9876883405951378 \ ] ) w = np.array ( [ \ 0.04293911957413078, \ 0.1458749193773909, \ 0.2203174603174603, \ 0.2808792186638755, \ 0.3099892820671425, \ 0.3099892820671425, \ 0.2808792186638755, \ 0.2203174603174603, \ 0.1458749193773909, \ 0.04293911957413078 \ ] ) else: print '' print 'FEJER1_SET - Fatal error!' print ' Illegal value of N = %d' % ( n ) print ' Legal values are 1 through 10.' exit ( 'FEJER1_SET - Fatal error!' ) return x, w def fejer1_set_test ( ): #*****************************************************************************80 # ## FEJER1_SET_TEST tests FEJER1_SET. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # print '' print 'FEJER1_SET_TEST' print ' FEJER1_SET sets the abscissas and weights' print ' of a Fejer type 1 quadrature rule.' print '' print ' Order W X' print '' for n in range ( 1, 11 ): x, w = fejer1_set ( n ) print '' print ' %8d' % ( n ) for i in range ( 0, n ): print ' %12g %12g' % ( w[i], x[i] ) # # Terminate. # print '' print 'FEJER1_SET_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fejer1_set_test ( ) timestamp ( )