#!/usr/bin/env python # def agm_values ( n_data ): #*****************************************************************************80 # ## AGM_VALUES returns some values of the AGM. # # Discussion: # # The AGM is defined for nonnegative A and B. # # The AGM of numbers A and B is defined by setting # # A(0) = A, # B(0) = B # # A(N+1) = ( A(N) + B(N) ) / 2 # B(N+1) = sqrt ( A(N) * B(N) ) # # The two sequences both converge to AGM(A,B). # # In Mathematica, the AGM can be evaluated by # # ArithmeticGeometricMean [ a, b ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 November 2014 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, B, the argument ofs the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 14 a_vec = np.array ( ( \ 22.0, \ 83.0, \ 42.0, \ 26.0, \ 4.0, \ 6.0, \ 40.0, \ 80.0, \ 90.0, \ 9.0, \ 53.0, \ 1.0, \ 1.0, \ 1.0, \ 1.5 ) ) b_vec = np.array ( ( \ 96.0, \ 56.0, \ 7.0, \ 11.0, \ 63.0, \ 45.0, \ 75.0, \ 0.0, \ 35.0, \ 1.0, \ 53.0, \ 2.0, \ 4.0, \ 8.0, \ 8.0 ) ) fx_vec = np.array ( ( \ 52.274641198704240049, \ 68.836530059858524345, \ 20.659301196734009322, \ 17.696854873743648823, \ 23.867049721753300163, \ 20.717015982805991662, \ 56.127842255616681863, \ 0.000000000000000000, \ 59.269565081229636528, \ 3.9362355036495554780, \ 53.000000000000000000, \ 1.4567910310469068692, \ 2.2430285802876025701, \ 3.6157561775973627487, \ 4.0816924080221632670 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 b = 0.0 fx = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, a, b, fx def agm_values_test ( ): #*****************************************************************************80 # ## AGM_VALUES_TEST demonstrates the use of AGM_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 February 2008 # # Author: # # John Burkardt # print '' print 'AGM_VALUES_TEST:' print ' AGM_VALUES stores values of' print ' the arithmetic geometric mean function.' print '' print ' A B AGM(A,B)' print '' n_data = 0 while ( True ): n_data, a, b, fx = agm_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16f' % ( a, b, fx ) print '' print 'AGM_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) agm_values_test ( ) timestamp ( )