#!/usr/bin/env python # def r8_atanh ( x ): #*****************************************************************************80 # ## R8_ATANH returns the inverse hyperbolic tangent of a number. # # Discussion: # # Y = R8_ATANH ( X ) # # implies that # # X = TANH(Y) = ( EXP(Y) - EXP(-Y) ) / ( EXP(Y) + EXP(-Y) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the number whose inverse hyperbolic # tangent is desired. The absolute value of X should be less than # or equal to 1. # # Output, real R8_ATANH, the inverse hyperbolic tangent of X. # from math import log from sys import exit if ( 1.0 <= abs ( x ) ): print '' print 'R8_ATANH - Fatal error!' print ' ABS(X) must be < 1.' print ' Your input is X = %f' % ( x ) exit ( 'R8_ATANH - Fatal error!' ) value = 0.5 * log ( ( 1.0 + x ) / ( 1.0 - x ) ) return value def r8_atanh_test ( ): #*****************************************************************************80 # ## R8_ATANH_TEST tests R8_ATANH. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 December 2014 # # Author: # # John Burkardt # from math import tanh print '' print 'R8_ATANH_TEST' print ' R8_ATANH computes the inverse hyperbolic tangent.' print '' print ' X R8_ATANH(X) TANH(R8_TANH(X))' print '' for i in range ( -2, 10 ): x = i / 10.0 a = r8_atanh ( x ) x2 = tanh ( a ) print ' %12f %12f %12f' % ( x, a, x2 ) # # Terminate. # print '' print 'R8_ATANH_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_atanh_test ( ) timestamp ( )