#!/usr/bin/env python # def r8_fall_values ( n_data ): #*****************************************************************************80 # ## R8_FALL_VALUES returns values of the falling factorial function. # # Discussion: # # The definition of the falling factorial function is # # (m)_n = (m)! / (m-n)! # = ( m ) * ( m - 1 ) * ( m - 2 ) \ * ( m - n + 1 ) # = Gamma ( m + 1 ) / Gamma ( m - n + 1 ) # # We assume 0 <= N <= M. # # In Mathematica, the function can be evaluated by: # # FactorialPower[m,n] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 December 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, integer N, the arguments of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 15 f_vec = np.array ( [ 120.0000000000000, \ 163.1601562500000, \ 216.5625000000000, \ 281.6601562500000, \ 360.0000000000000, \ 1.000000000000000, \ 7.500000000000000, \ 48.75000000000000, \ 268.1250000000000, \ 1206.562500000000, \ 4222.968750000000, \ 10557.42187500000, \ 15836.13281250000, \ 7918.066406250000, \ -3959.03320312500 ] ) n_vec = np.array ( [ 4, \ 4, \ 4, \ 4, \ 4, \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9 ] ) x_vec = np.array ( [ 5.00, \ 5.25, \ 5.50, \ 5.75, \ 6.00, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50, \ 7.50 ] ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 n = 0 f = 0.0 else: x = x_vec[n_data] n = n_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, n, f def r8_fall_values_test ( ): #*****************************************************************************80 # ## R8_FALL_VALUES_TEST tests R8_FALL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # print '' print 'R8_FALL_VALUES_TEST:' print ' R8_FALL_VALUES returns values of the falling factorial.' print '' print ' X N R8_FALL(X,N)' print '' n_data = 0 while ( True ): n_data, x, n, f = r8_fall_values ( n_data ) if ( n_data == 0 ): break print ' %8.4f %8d %24.16g' % ( x, n, f ) # # Terminate. # print '' print 'R8_FALL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_fall_values_test ( ) timestamp ( )