#!/usr/bin/env python def r8mat_norm_fro ( m, n, a ): #*****************************************************************************80 # ## R8MAT_NORM_FRO returns the Frobenius norm of an R8MAT. # # Discussion: # # The Frobenius norm is defined as # # value = sqrt ( sum ( 1 <= I <= M ) sum ( 1 <= j <= N ) A(I,J)^2 ) # # The matrix Frobenius norm is not derived from a vector norm, but # is compatible with the vector L2 norm, so that: # # vec_norm_l2 ( A * x ) <= mat_norm_fro ( A ) * vec_norm_l2 ( x ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the number of rows in A. # # Input, integer N, the number of columns in A. # # Input, real A(M,N), the matrix whose Frobenius # norm is desired. # # Output, real VALUE, the Frobenius norm of A. # from math import sqrt value = sqrt ( sum ( sum ( a ** 2 ) ) ) return value def r8mat_norm_fro_test ( ): #*****************************************************************************80 # ## R8MAT_NORM_FRO_TEST tests R8MAT_NORM_FRO. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 December 2014 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print from math import sqrt m = 5 n = 4 a = np.zeros ( ( m, n ) ) k = 0 t1 = 0.0 for i in range ( 0, m ): for j in range ( 0, n ): k = k + 1 a[i,j] = k t1 = t1 + k * k t1 = sqrt ( t1 ) print '' print 'R8MAT_NORM_FRO_TEST' print ' R8MAT_NORM_FRO computes the Frobenius norm of an R8MAT;' t2 = r8mat_norm_fro ( m, n, a ) r8mat_print ( m, n, a, ' A:' ) print '' print ' Expected Frobenius norm = %g' % ( t1 ) print ' Computed Frobenius norm = %g' % ( t2 ) print '' print 'R8MAT_NORM_FRO_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8mat_norm_fro_test ( ) timestamp ( )