#!/usr/bin/env python """rkf45 test""" from numpy import * from rkf45 import * from datetime import datetime def rkf45_test( ): """ #******************************************************************** # ## RKF45_TEST tests the RKF45 ODE integrator. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 April 2011 # # Author: # # John Burkardt # """ timestamp ( ) print '\n' print 'RKF45_TEST' print ' Python version' print ' Test the RKF45 library.' rkf45_test04 ( ) rkf45_test05 ( ) rkf45_test06 ( ) # # Terminate. # print '' print 'RKF45_TEST' print ' Normal end of execution.' print '\n' timestamp ( ) def timestamp ( ): """ #*****************************************************************************80 # ## TIMESTAMP prints the current YMDHMS date as a timestamp. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2003 # # Author: # # John Burkardt # """ now=datetime.now() print now.strftime("Date: %Y-%m-%d, time: %H:%M") return def rkf45_test04 ( ): """ #*****************************************************************************80 # ## RKF45_TEST04 solves a scalar ODE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 June 2006 # # Author: # # John Burkardt # """ print '' print 'RKF45_TEST04' print ' Solve a scalar equation using R8_RKF45:' print '' print ' Y'' = 0.25 * Y * ( 1 - Y / 20 )' neqn = 1 abserr=sqrt(finfo(double).eps) relerr=sqrt(finfo(double).eps) flag = 1 t_start = 0.0 t_stop = 20.0 n_step = 5 t_out = 0.0 t = t_out y = array([ 1.0 ]) yp = r8_f1 ( t, y ) print '' print ' FLAG T Y Y'' Y_Exact Error' print '%4d %12f %12f %12f %12f %12e' %(\ flag, t, y[0], yp[0], r8_y1x ( t ), y[0] - r8_y1x ( t ) ) for i_step in range( 1 , n_step+1): t = ( ( n_step - i_step + 1 ) * t_start + ( i_step - 1 ) * t_stop ) / ( n_step) t_out = ( ( n_step - i_step ) * t_start + ( i_step ) * t_stop ) / ( n_step) y, yp, t, flag = r8_rkf45 ( r8_f1, neqn, y, yp, t, t_out, relerr, abserr, flag ) print '%4d %12f %12f %12f %12f %12e' %(\ flag, t, y[0], yp[0], r8_y1x ( t ), y[0] - r8_y1x ( t ) ) return def r8_f1 ( t, y ): """ #*****************************************************************************80 # #% R8_F1 evaluates the derivative for the ODE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 August 2010 # # Author: # # John Burkardt # # Parameters: # # Input, real T, the value of the independent variable. # # Input, real Y, the value of the dependent variable. # # Output, real YP, the value of the derivative # dY(1:NEQN)/dT. # """ yp = zeros ( size ( y ) ) yp[0] = 0.25 * y[0] * ( 1.0 - y[0] / 20.0 ) return(yp) def rkf45_test05 ( ): """ #*****************************************************************************80 # #% RKF45_TEST05 solves a vector ODE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 June 2006 # # Author: # # John Burkardt # """ print '' print 'RKF45_TEST05' print ' Solve a vector equation using R8_RKF45' print '' print ' Y''(1) = Y(2)' print ' Y''(2) = -Y(1)' neqn = 2 abserr=sqrt(finfo(double).eps) relerr=sqrt(finfo(double).eps) flag = 1 t_start = 0.0 t_stop = 2.0 * 3.14159265 n_step = 12 t = 0.0 t_out = 0.0 y=zeros(2) y[0] = 1.0 yp = r8_f2 ( t, y ) print '' print ' FLAG T Y(1) Y(2)' print '%4d %12f %12f %12f' %( flag, t, y[0], y[1] ) for i_step in range (1,n_step+1): t = ( ( n_step - i_step + 1 ) * t_start \ + ( i_step - 1 ) * t_stop ) \ / ( n_step ) t_out = ( ( n_step - i_step ) * t_start \ + ( i_step ) * t_stop ) \ / ( n_step ) y, yp, t, flag = r8_rkf45 ( r8_f2, neqn, y, yp, t, t_out, relerr, abserr, flag ) print '%4d %12f %12f %12f' %( flag, t, y[0], y[1] ) return def r8_f2 ( t, y ): """ #*****************************************************************************80 # #% R8_F2 evaluates the derivative for the ODE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 August 2010 # # Author: # # John Burkardt # # Parameters: # # Input, real T, the value of the independent variable. # # Input, real Y(NEQN), the value of the dependent variable. # # Output, real YP(NEQN), the value of the derivative # dY(1:NEQN)/dT. # """ yp=zeros(size(y)) yp[0] = y[1] yp[1] = -y[0] return(yp) def r8_y1x ( t ): """ #*****************************************************************************80 # #% R8_Y1X evaluates the exact solution of the ODE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 August 2010 # # Author: # # John Burkardt # # Parameters: # # Input, real T, the value of the independent variable. # # Output, real Y1X, the exact solution. # """ y1x = 20.0 / ( 1.0 + 19.0 * exp ( - 0.25 * t ) ) return(y1x) def rkf45_test06 ( ): """ #******************************* # #% RKF45_TEST06 solves a scalar ODE and uses one-step integration. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 August 2010 # # Author: # # John Burkardt # """ print '' print 'RKF45_TEST06' print ' Solve a scalar equation using R8_RKF45' print '' print ' Y'' = 0.25 * Y * ( 1 - Y / 20 )' print '' print ' Use the special SINGLE_STEP mode' print ' which returns after every step.' neqn = 1 abserr=sqrt(finfo(double).eps) relerr=sqrt(finfo(double).eps) flag = -1 t_start = 0.0 t_stop = 20.0 n_step = 5 t = 0.0 t_out = 0.0 y=zeros(1) y[0] = 1.0 yp = r8_f1 ( t, y ) print '' print ' FLAG T Y dY/dt Y_Exact Error' print '%4d %12f %12f %12f %12f %12e' %(\ flag, t, y[0], yp[0], r8_y1x ( t ), y[0] - r8_y1x ( t ) ) for i_step in range(1,n_step+1): t = ( ( n_step - i_step + 1 ) * t_start \ + ( i_step - 1 ) * t_stop ) \ / ( n_step ) t_out = ( ( n_step - i_step ) * t_start \ + ( i_step ) * t_stop ) \ / ( n_step ) # # As long as FLAG is negative, we are heading towards T_OUT, but # have not reached it. # while ( flag < 0 ): y, yp, t, flag = r8_rkf45 ( r8_f1, neqn, y, yp, t, t_out, relerr, abserr, flag ) print '%4d %12f %12f %12f %12f %12e' %(\ flag, t, y[0], yp[0], r8_y1x ( t ), y[0] - r8_y1x ( t ) ) # # FLAG is returned as +2 when we reach T_OUT. Reset it to -2 # to continue to the next T_OUT in one step mode. # flag = -2 return