#! /usr/bin/env python import math from numpy import * def i4_bit_hi1 ( n ): #*****************************************************************************80 # ## I4_BIT_HI1 returns the position of the high 1 bit base 2 in an integer. # # Example: # # N Binary BIT # ---- -------- ---- # 0 0 0 # 1 1 1 # 2 10 2 # 3 11 2 # 4 100 3 # 5 101 3 # 6 110 3 # 7 111 3 # 8 1000 4 # 9 1001 4 # 10 1010 4 # 11 1011 4 # 12 1100 4 # 13 1101 4 # 14 1110 4 # 15 1111 4 # 16 10000 5 # 17 10001 5 # 1023 1111111111 10 # 1024 10000000000 11 # 1025 10000000001 11 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer N, the integer to be measured. # N should be nonnegative. If N is nonpositive, the value will always be 0. # # Output, integer BIT, the number of bits base 2. # i = math.floor ( n ) bit = 0 while ( 1 ): if ( i <= 0 ): break bit += 1 i = math.floor ( i / 2. ) return bit def i4_bit_lo0 ( n ): #*****************************************************************************80 # ## I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer. # # Example: # # N Binary BIT # ---- -------- ---- # 0 0 1 # 1 1 2 # 2 10 1 # 3 11 3 # 4 100 1 # 5 101 2 # 6 110 1 # 7 111 4 # 8 1000 1 # 9 1001 2 # 10 1010 1 # 11 1011 3 # 12 1100 1 # 13 1101 2 # 14 1110 1 # 15 1111 5 # 16 10000 1 # 17 10001 2 # 1023 1111111111 1 # 1024 10000000000 1 # 1025 10000000001 1 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer N, the integer to be measured. # N should be nonnegative. # # Output, integer BIT, the position of the low 1 bit. # bit = 0 i = math.floor ( n ) while ( 1 ): bit = bit + 1 i2 = math.floor ( i / 2. ) if ( i == 2 * i2 ): break i = i2 return bit def i4_sobol_generate ( m, n, skip ): #*****************************************************************************80 # ## I4_SOBOL_GENERATE generates a Sobol dataset. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer M, the spatial dimension. # # Input, integer N, the number of points to generate. # # Input, integer SKIP, the number of initial points to skip. # # Output, real R(M,N), the points. # r=zeros((m,n)) for j in xrange (1, n+1): seed = skip + j - 2 [ r[0:m,j-1], seed ] = i4_sobol ( m, seed ) return r def i4_sobol ( dim_num, seed ): #*****************************************************************************80 # ## I4_SOBOL generates a new quasirandom Sobol vector with each call. # # Discussion: # # The routine adapts the ideas of Antonov and Saleev. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Original FORTRAN77 version by Bennett Fox. # MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Reference: # # Antonov, Saleev, # USSR Computational Mathematics and Mathematical Physics, # olume 19, 1980, pages 252 - 256. # # Paul Bratley, Bennett Fox, # Algorithm 659: # Implementing Sobol's Quasirandom Sequence Generator, # ACM Transactions on Mathematical Software, # Volume 14, Number 1, pages 88-100, 1988. # # Bennett Fox, # Algorithm 647: # Implementation and Relative Efficiency of Quasirandom # Sequence Generators, # ACM Transactions on Mathematical Software, # Volume 12, Number 4, pages 362-376, 1986. # # Ilya Sobol, # USSR Computational Mathematics and Mathematical Physics, # Volume 16, pages 236-242, 1977. # # Ilya Sobol, Levitan, # The Production of Points Uniformly Distributed in a Multidimensional # Cube (in Russian), # Preprint IPM Akad. Nauk SSSR, # Number 40, Moscow 1976. # # Parameters: # # Input, integer DIM_NUM, the number of spatial dimensions. # DIM_NUM must satisfy 1 <= DIM_NUM <= 40. # # Input/output, integer SEED, the "seed" for the sequence. # This is essentially the index in the sequence of the quasirandom # value to be generated. On output, SEED has been set to the # appropriate next value, usually simply SEED+1. # If SEED is less than 0 on input, it is treated as though it were 0. # An input value of 0 requests the first (0-th) element of the sequence. # # Output, real QUASI(DIM_NUM), the next quasirandom vector. # global atmost global dim_max global dim_num_save global initialized global lastq global log_max global maxcol global poly global recipd global seed_save global v if ( not 'initialized' in globals().keys() ): initialized = 0 dim_num_save = -1 if ( not initialized or dim_num != dim_num_save ): initialized = 1 dim_max = 40 dim_num_save = -1 log_max = 30 seed_save = -1 # # Initialize (part of) V. # v = zeros((dim_max,log_max)) v[0:40,0] = transpose([ \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) v[2:40,1] = transpose([ \ 1, 3, 1, 3, 1, 3, 3, 1, \ 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, \ 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, \ 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ]) v[3:40,2] = transpose([ \ 7, 5, 1, 3, 3, 7, 5, \ 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, \ 5, 3, 3, 1, 7, 5, 1, 3, 3, 7, \ 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ]) v[5:40,3] = transpose([ \ 1, 7, 9,13,11, \ 1, 3, 7, 9, 5,13,13,11, 3,15, \ 5, 3,15, 7, 9,13, 9, 1,11, 7, \ 5,15, 1,15,11, 5, 3, 1, 7, 9 ]) v[7:40,4] = transpose([ \ 9, 3,27, \ 15,29,21,23,19,11,25, 7,13,17, \ 1,25,29, 3,31,11, 5,23,27,19, \ 21, 5, 1,17,13, 7,15, 9,31, 9 ]) v[13:40,5] = transpose([ \ 37,33, 7, 5,11,39,63, \ 27,17,15,23,29, 3,21,13,31,25, \ 9,49,33,19,29,11,19,27,15,25 ]) v[19:40,6] = transpose([ \ 13, \ 33,115, 41, 79, 17, 29,119, 75, 73,105, \ 7, 59, 65, 21, 3,113, 61, 89, 45,107 ]) v[37:40,7] = transpose([ \ 7, 23, 39 ]) # # Set POLY. # poly= [ \ 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, \ 61, 55, 41, 67, 97, 91, 109, 103, 115, 131, \ 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, \ 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ] atmost = 2**log_max - 1 # # Find the number of bits in ATMOST. # maxcol = i4_bit_hi1 ( atmost ) # # Initialize row 1 of V. # v[0,0:maxcol] = 1 # # Things to do only if the dimension changed. # if ( dim_num != dim_num_save ): # # Check parameters. # if ( dim_num < 1 or dim_max < dim_num ): print 'I4_SOBOL - Fatal error!' print ' The spatial dimension DIM_NUM should satisfy:' print ' 1 <= DIM_NUM <= %d'%dim_max print ' But this input value is DIM_NUM = %d'%dim_num return dim_num_save = dim_num # # Initialize the remaining rows of V. # for i in xrange(2 , dim_num+1): # # The bits of the integer POLY(I) gives the form of polynomial I. # # Find the degree of polynomial I from binary encoding. # j = poly[i-1] m = 0 while ( 1 ): j = math.floor ( j / 2. ) if ( j <= 0 ): break m = m + 1 # # Expand this bit pattern to separate components of the logical array INCLUD. # j = poly[i-1] includ=zeros(m) for k in xrange(m, 0, -1): j2 = math.floor ( j / 2. ) includ[k-1] = (j != 2 * j2 ) j = j2 # # Calculate the remaining elements of row I as explained # in Bratley and Fox, section 2. # for j in xrange( m+1, maxcol+1 ): newv = v[i-1,j-m-1] l = 1 for k in xrange(1, m+1): l = 2 * l if ( includ[k-1] ): newv = bitwise_xor ( int(newv), int(l * v[i-1,j-k-1]) ) v[i-1,j-1] = newv # # Multiply columns of V by appropriate power of 2. # l = 1 for j in xrange( maxcol-1, 0, -1): l = 2 * l v[0:dim_num,j-1] = v[0:dim_num,j-1] * l # # RECIPD is 1/(common denominator of the elements in V). # recipd = 1.0 / ( 2 * l ) lastq=zeros(dim_num) seed = int(math.floor ( seed )) if ( seed < 0 ): seed = 0 if ( seed == 0 ): l = 1 lastq=zeros(dim_num) elif ( seed == seed_save + 1 ): # # Find the position of the right-hand zero in SEED. # l = i4_bit_lo0 ( seed ) elif ( seed <= seed_save ): seed_save = 0 l = 1 lastq=zeros(dim_num) for seed_temp in xrange( int(seed_save), int(seed)): l = i4_bit_lo0 ( seed_temp ) for i in xrange(1 , dim_num+1): lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) ) l = i4_bit_lo0 ( seed ) elif ( seed_save + 1 < seed ): for seed_temp in xrange( int(seed_save + 1), int(seed) ): l = i4_bit_lo0 ( seed_temp ) for i in xrange(1, dim_num+1): lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) ) l = i4_bit_lo0 ( seed ) # # Check that the user is not calling too many times! # if ( maxcol < l ): print 'I4_SOBOL - Fatal error!' print ' Too many calls!' print ' MAXCOL = %d\n'%maxcol print ' L = %d\n'%l return # # Calculate the new components of QUASI. # quasi=zeros(dim_num) for i in xrange( 1, dim_num+1): quasi[i-1] = lastq[i-1] * recipd lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) ) seed_save = seed seed = seed + 1 return [ quasi, seed ] def i4_uniform ( a, b, seed ): #*****************************************************************************80 # ## I4_UNIFORM returns a scaled pseudorandom I4. # # Discussion: # # The pseudorandom number will be scaled to be uniformly distributed # between A and B. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Reference: # # Paul Bratley, Bennett Fox, Linus Schrage, # A Guide to Simulation, # Springer Verlag, pages 201-202, 1983. # # Pierre L'Ecuyer, # Random Number Generation, # in Handbook of Simulation, # edited by Jerry Banks, # Wiley Interscience, page 95, 1998. # # Bennett Fox, # Algorithm 647: # Implementation and Relative Efficiency of Quasirandom # Sequence Generators, # ACM Transactions on Mathematical Software, # Volume 12, Number 4, pages 362-376, 1986. # # Peter Lewis, Allen Goodman, James Miller # A Pseudo-Random Number Generator for the System/360, # IBM Systems Journal, # Volume 8, pages 136-143, 1969. # # Parameters: # # Input, integer A, B, the minimum and maximum acceptable values. # # Input, integer SEED, a seed for the random number generator. # # Output, integer C, the randomly chosen integer. # # Output, integer SEED, the updated seed. # if ( seed == 0 ): print 'I4_UNIFORM - Fatal error!' print ' Input SEED = 0!' seed = math.floor ( seed ) a = round ( a ) b = round ( b ) seed = mod ( seed, 2147483647 ) if ( seed < 0 ) : seed = seed + 2147483647 k = math.floor ( seed / 127773 ) seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ): seed = seed + 2147483647 r = seed * 4.656612875E-10 # # Scale R to lie between A-0.5 and B+0.5. # r = ( 1.0 - r ) * ( min ( a, b ) - 0.5 ) + r * ( max ( a, b ) + 0.5 ) # # Use rounding to convert R to an integer between A and B. # value = round ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) c = value return [ int(c), int(seed) ] def prime_ge ( n ): #*****************************************************************************80 # ## PRIME_GE returns the smallest prime greater than or equal to N. # # Example: # # N PRIME_GE # # -10 2 # 1 2 # 2 2 # 3 3 # 4 5 # 5 5 # 6 7 # 7 7 # 8 11 # 9 11 # 10 11 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Original MATLAB version by John Burkardt. # PYTHON version by Corrado Chisari # # Parameters: # # Input, integer N, the number to be bounded. # # Output, integer P, the smallest prime number that is greater # than or equal to N. # p = max ( math.ceil ( n ), 2 ) while ( not isprime ( p ) ): p = p + 1 return p def isprime(n): #*****************************************************************************80 # ## IS_PRIME returns True if N is a prime number, False otherwise # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2011 # # Author: # # Corrado Chisari # # Parameters: # # Input, integer N, the number to be checked. # # Output, boolean value, True or False # if n!=int(n) or n<1: return False p=2 while p