#! /usr/bin/env python # def sphere_llq_grid_points ( r, pc, lat_num, long_num, point_num ): #*****************************************************************************80 # ## SPHERE_LLQ_GRID_POINTS produces points on an LLQ grid on a sphere. # # Discussion: # # A SPHERE LLQ grid imposes a grid of quadrilaterals on a sphere, # using latitude and longitude lines. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real R, the radius of the sphere. # # Input, real PC(1,3), the center of the sphere. # # Input, integer LAT_NUM, LONG_NUM, the number of latitude and longitude # lines to draw. The latitudes do not include the North and South # poles, which will be included automatically, so LAT_NUM = 5, for instance, # will result in points along 7 lines of latitude. # # Input, integer POINT_NUM, the number of grid points. # # Output, real P(POINT_NUM,3), the grid points. # import numpy as np n = 0 p = np.zeros ( [ point_num, 3 ] ) # # The north pole. # theta = 0.0 phi = 0.0 p[n,0] = pc[0] + r * np.sin ( phi ) * np.cos ( theta ) p[n,1] = pc[1] + r * np.sin ( phi ) * np.sin ( theta ) p[n,2] = pc[2] + r * np.cos ( phi ) n = n + 1 # # Do each intermediate ring of latitude. # for lat in range ( 1, lat_num + 1 ): phi = np.pi * float ( lat ) / float ( lat_num + 1 ) # # Along that ring of latitude, compute points at various longitudes. # for lon in range ( 0, long_num ): theta = 2.0 * np.pi * float ( lon ) / float ( long_num ); p[n,0] = pc[0] + r * np.sin ( phi ) * np.cos ( theta ) p[n,1] = pc[1] + r * np.sin ( phi ) * np.sin ( theta ) p[n,2] = pc[2] + r * np.cos ( phi ) n = n + 1; # # The south pole. # theta = 0.0 phi = np.pi p[n,0] = pc[0] + r * np.sin ( phi ) * np.cos ( theta ) p[n,1] = pc[1] + r * np.sin ( phi ) * np.sin ( theta ) p[n,2] = pc[2] + r * np.cos ( phi ) n = n + 1 return p def sphere_llq_grid_points_test ( ): #*****************************************************************************80 # ## SPHERE_LLQ_GRID_POINTS_TEST tests SPHERE_LLQ_GRID_POINTS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 May 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_print import r8vec_print from sphere_llq_grid_point_count import sphere_llq_grid_point_count lat_num = 3 long_num = 4 pc = np.array ( [ 0.0, 0.0, 0.0 ] ) r = 10.0 print '' print 'SPHERE_LLQ_GRID_POINTS_TEST' print ' SPHERE_LLQ_POINTS produces latitude/longitude' print ' points on a sphere in 3D.' print '' print ' Radius = %g' % ( r ) r8vec_print ( 3, pc, ' Center:' ) print '' print ' The number of latitudes = %d' % ( lat_num ) print ' The number of longitudes = %d' % ( long_num ) node_num = sphere_llq_grid_point_count ( lat_num, long_num ) print '' print ' The number of grid points is %d' % ( node_num ) node_xyz = sphere_llq_grid_points ( r, pc, lat_num, long_num, node_num ) print '' k = 0 print ' %8d' % ( k ), for i in range ( 0, 3 ): print ' %12f' % ( node_xyz[k,i] ), print '' for lat in range ( 0, lat_num ): print '' for lon in range ( 0, long_num ): k = k + 1 print ' %8d' % ( k ), for i in range ( 0, 3 ): print ' %12f' % ( node_xyz[k,i] ), print '' print '' k = k + 1 print ' %8d' % ( k ), for i in range ( 0, 3 ): print ' %12f' % ( node_xyz[k,i] ), print '' # # Terminate. # print '' print 'SPHERE_LLQ_GRID_POINTS_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sphere_llq_grid_points_test ( ) timestamp ( )