#! /usr/bin/env python # def resid_spiral ( n, x, y, c ): #*****************************************************************************80 # ## RESID_SPIRAL computes the residual for a spiral velocity vector field. # # Discussion: # # Note that the continuous velocity field (U,V)(X,Y) that is discretely # sampled here satisfies the homogeneous continuity equation, that is, # it has zero divergence. In other words: # # dU/dX + dV/dY = 0. # # This is by construction, since we have # # U(X,Y) = 10 * d/dY ( PHI(X) * PHI(Y) ) # V(X,Y) = -10 * d/dX ( PHI(X) * PHI(Y) ) # # which guarantees zero divergence. # # The underlying function PHI is defined by # # PHI(Z) = ( 1 - cos ( C * pi * Z ) ) * ( 1 - Z )^2 # # where C is a parameter. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of evaluation points. # # Input, real X(N), Y(N), the coordinates of the evaluation points. # # Input, real C, a parameter, typically between 0 and 2 * PI. # # Output, real PR(N), the residual in the continuity equation. # import numpy as np pr = np.zeros ( n ) u = np.zeros ( n ) ux = np.zeros ( n ) v = np.zeros ( n ) vy = np.zeros ( n ) u = 10.0 * ( 1.0 - np.cos ( c * np.pi * x ) ) \ * ( 1.0 - x ) ** 2 \ * ( \ c * np.pi * np.sin ( c * np.pi * y ) * ( 1.0 - y ) ** 2 \ - ( 1.0 - np.cos ( c * np.pi * y ) ) \ * 2.0 * ( 1.0 - y ) \ ) ux = 10.0 * \ ( \ c * np.pi * np.sin ( c * np.pi * x ) * ( 1.0 - x ) ** 2 \ - ( 1.0 - np.cos ( c * np.pi * x ) ) \ * 2.0 * ( 1.0 - x ) \ ) \ * \ ( \ c * np.pi * np.sin ( c * np.pi * y ) * ( 1.0 - y ) ** 2 \ - ( 1.0 - np.cos ( c * np.pi * y ) ) \ * 2.0 * ( 1.0 - y ) \ ); v = - 10.0 * ( 1.0 - np.cos ( c * np.pi * y ) ) \ * ( 1.0 - y ) ** 2 \ * ( \ c * np.pi * np.sin ( c * np.pi * x ) * ( 1.0 - x ) ** 2 \ - ( 1.0 - np.cos ( c * np.pi * x ) ) \ * 2.0 * ( 1.0 - x ) \ ); vy = - 10.0 * \ ( \ c * np.pi * np.sin ( c * np.pi * x ) * ( 1.0 - x ) ** 2 \ - ( 1.0 - np.cos ( c * np.pi * x ) ) \ * 2.0 * ( 1.0 - x ) \ ) \ * \ ( \ c * np.pi * np.sin ( c * np.pi * y ) * ( 1.0 - y ) ** 2 \ - ( 1.0 - np.cos ( c * np.pi * y ) ) \ * 2.0 * ( 1.0 - y ) \ ) pr = ux + vy; return pr def resid_spiral_test ( ): #*****************************************************************************80 # ## RESID_SPIRAL_TEST generates a field and samples its residuals. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 January 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab print '' print 'RESID_SPIRAL_TEST' print ' Sample a spiral velocity field and estimate the' print ' range of residuals in the continuity equation.' n = 1000 x_lo = 0.0 x_hi = +1.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) y, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) t = 0.0 c = 1.00 pr = resid_spiral ( n, x, y, c ) print '' print ' Minimum Maximum' print '' print ' Pr: %14.6g %14.6g' % ( np.min ( np.abs ( pr ) ), np.max ( np.abs ( pr ) ) ) print '' print 'RESID_SPIRAL_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) resid_spiral_test ( ) timestamp ( )