#!/usr/bin/env python def asm_enum ( n ): #*****************************************************************************80 # ## ASM_ENUM returns the number of alternating sign matrices of a given order. # # Discussion: # # N ASM_NUM # # 0 1 # 1 1 # 2 2 # 3 7 # 4 42 # 5 429 # 6 7436 # 7 218348 # # A direct formula is # # ASM_NUM ( N ) = product ( 0 <= I <= N-1 ) ( 3 * I + 1 )# / ( N + I )# # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 January 2001 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrices. # # Output, integer VALUE, the number of alternating sign # matrices of order N. # import numpy as np value = 0 if ( n + 1 <= 0 ): return value # # Row 1 # if ( n + 1 == 1 ): value = 1 return value # # Row 2 # if ( n + 1 == 2 ): value = 1 return value a = np.zeros ( n + 1 ) b = np.zeros ( n + 1 ) c = np.zeros ( n + 1 ) a[0] = 1 a[1] = 1 b[0] = 2 c[0] = 2 # # Row 3 and on. # for nn in range ( 3, n + 1 ): b[nn-2] = nn for i in range ( nn - 2, 1, -1 ): b[i-1] = b[i-1] + b[i-2] b[0] = 2 c[nn-2] = 2 for i in range ( nn - 2, 1, -1 ): c[i-1] = c[i-1] + c[i-2] c[0] = nn for i in range ( 1, nn - 1 ): a[0] = a[0] + a[i] for i in range ( 1, nn ): a[i] = a[i-1] * c[i-1] // b[i-1] value = 0 for i in range ( 0, n ): value = value + a[i] return value def asm_enum_test ( ): #*****************************************************************************80 # ## ASM_ENUM_TEST tests ASM_ENUM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 October 2014 # # Author: # # John Burkardt # n_max = 7 print '' print 'ASM_ENUM_TEST:' print ' ASM_ENUM returns the number of alternating sign' print ' matrices of a given order.' print '' for n in range ( 0, n_max + 1 ): value = asm_enum ( n ) print ' %2d %8d' % ( n, value ) # # Terminate. # print '' print 'ASM_ENUM_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) asm_enum_test ( ) timestamp ( )