#!/usr/bin/env python def asm_triangle ( n ): #*****************************************************************************80 # ## ASM_TRIANGLE returns a row of the alternating sign matrix triangle. # # Discussion: # # The first seven rows of the triangle are as follows: # # 1 2 3 4 5 6 7 # # 0 1 # 1 1 1 # 2 2 3 2 # 3 7 14 14 7 # 4 42 105 135 105 42 # 5 429 1287 2002 2002 1287 429 # 6 7436 26026 47320 56784 47320 26026 7436 # # For a given N, the value of A(J) represents entry A(I,J) of # the triangular matrix, and gives the number of alternating sign matrices # of order N in which the (unique) 1 in row 1 occurs in column J. # # Thus, of alternating sign matrices of order 3, there are # 2 with a leading 1 in column 1: # # 1 0 0 1 0 0 # 0 1 0 0 0 1 # 0 0 1 0 1 0 # # 3 with a leading 1 in column 2, and # # 0 1 0 0 1 0 0 1 0 # 1 0 0 0 0 1 1-1 1 # 0 0 1 1 0 0 0 1 0 # # 2 with a leading 1 in column 3: # # 0 0 1 0 0 1 # 1 0 0 0 1 0 # 0 1 0 1 0 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 June 2004 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the desired row. # # Output, integer A(N+1), the entries of the row. # import numpy as np from i4vec_sum import i4vec_sum a = np.zeros ( n + 1 ); b = np.zeros ( n + 1 ); c = np.zeros ( n + 1 ); # # Row 1 # a[0] = 1; if ( n + 1 == 1 ): return a # # Row 2 # nn = 2 b[0] = 2 c[0] = nn a[0] = i4vec_sum ( nn - 1, a ) for i in range ( 1, nn ): a[i] = a[i-1] * c[i-1] / b[i-1] if ( n + 1 == 2 ): return a # # Row 3 and on. # for nn in range ( 3, n + 2 ): b[nn-2] = nn for i in range ( nn - 3, 0, -1 ): b[i] = b[i] + b[i-1] b[0] = 2 c[nn-2] = 2 for i in range ( nn - 3, 0, -1 ): c[i] = c[i] + c[i-1] c[0] = nn a[0] = i4vec_sum ( nn - 1, a ) for i in range ( 1, nn ): a[i] = a[i-1] * c[i-1] / b[i-1] return a def asm_triangle_test ( ): #*****************************************************************************80 # ## ASM_TRIANGLE_TEST tests ASM_TRIANGLE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 April 2009 # # Author: # # John Burkardt # max_n = 7 print '' print 'ASM_TRIANGLE_TEST' print ' ASM_TRIANGLE returns a row of the alternating sign' print ' matrix triangle.' print '' for n in range ( 0, max_n + 1 ): a = asm_triangle ( n ) print ' %2d' % ( n ), for i in range ( 0, n + 1 ): print ' %8d' % ( a[i] ), print '' # # Terminate. # print '' print 'ASM_TRIANGLE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) asm_triangle_test ( ) timestamp ( )