#!/usr/bin/env python # def catalan ( n ): #*****************************************************************************80 # ## CATALAN computes the Catalan numbers, from C(0) to C(N). # # First values: # # C(0) 1 # C(1) 1 # C(2) 2 # C(3) 5 # C(4) 14 # C(5) 42 # C(6) 132 # C(7) 429 # C(8) 1430 # C(9) 4862 # C(10) 16796 # # Formula: # # C(N) = (2*N)! / ( (N+1) * (N!) * (N!) ) # = 1 / (N+1) * COMB ( 2N, N ) # = 1 / (2N+1) * COMB ( 2N+1, N+1). # # Recursion: # # C(N) = 2 * (2*N-1) * C(N-1) / (N+1) # C(N) = sum ( 1 <= I <= N-1 ) C(I) * C(N-I) # # Discussion: # # The Catalan number C(N) counts: # # 1) the number of binary trees on N vertices; # 2) the number of ordered trees on N+1 vertices; # 3) the number of full binary trees on 2N+1 vertices; # 4) the number of well formed sequences of 2N parentheses # 5) number of ways 2N ballots can be counted, in order, # with N positive and N negative, so that the running sum # is never negative; # 6) the number of standard tableaus in a 2 by N rectangular Ferrers diagram; # 7) the number of monotone functions from [1..N} to [1..N} which # satisfy f(i) <= i for all i; # 8) the number of ways to triangulate a polygon with N+2 vertices. # # Example: # # N = 3 # # ()()() # ()(()) # (()()) # (())() # ((())) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Reference: # # Dennis Stanton, Dennis White, # Constructive Combinatorics, # Springer Verlag, New York, 1986. # # Parameters: # # Input, integer N, the number of Catalan numbers desired. # # Output, integer C(1:N+1), the Catalan numbers from C(0) to C(N). # import numpy as np c = np.zeros ( n + 1 ) c[0] = 1 # # The extra parentheses ensure that the integer division is # done AFTER the integer multiplication. # for i in range ( 1, n + 1 ): c[i] = ( c[i-1] * 2 * ( 2 * i - 1 ) ) / ( i + 1 ) return c def catalan_test ( ): #*****************************************************************************80 # ## CATALAN_TEST tests CATALAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from catalan_values import catalan_values print '' print 'CATALAN_TEST' print ' CATALAN computes Catalan numbers.' print '' print ' N exact C(I) computed C(I)' print '' n_data = 0 while ( True ): n_data, n, c = catalan_values ( n_data ) if ( n_data == 0 ): break c2 = catalan ( n ) print ' %4d %6d %6d' % ( n, c, c2[n] ) # # Terminate. # print '' print 'CATALAN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) catalan_test ( ) timestamp ( )