#!/usr/bin/env python # def catalan_values ( n_data ): #*****************************************************************************80 # ## CATALAN_VALUES returns some values of the Catalan numbers. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Binomial[2*n,n] / ( n + 1 ) # # First values: # # C(0) 1 # C(1) 1 # C(2) 2 # C(3) 5 # C(4) 14 # C(5) 42 # C(6) 132 # C(7) 429 # C(8) 1430 # C(9) 4862 # C(10) 16796 # # Formula: # # C(N) = (2*N)! / ( (N+1) * (N!) * (N!) ) # = 1 / (N+1) * COMB ( 2N, N ) # = 1 / (2N+1) * COMB ( 2N+1, N+1). # # Recursion: # # C(N) = 2 * (2*N-1) * C(N-1) / (N+1) # C(N) = sum ( 1 <= I <= N-1 ) C(I) * C(N-I) # # Discussion: # # The Catalan number C(N) counts: # # 1) the number of binary trees on N vertices; # 2) the number of ordered trees on N+1 vertices; # 3) the number of full binary trees on 2N+1 vertices; # 4) the number of well formed sequences of 2N parentheses; # 5) the number of ways 2N ballots can be counted, in order, # with N positive and N negative, so that the running sum # is never negative; # 6) the number of standard tableaus in a 2 by N rectangular Ferrers diagram; # 7) the number of monotone functions from [1..N} to [1..N} which # satisfy f(i) <= i for all i; # 8) the number of ways to triangulate a polygon with N+2 vertices. # # Example: # # N = 3 # # ()()() # ()(()) # (()()) # (())() # ((())) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 September 2004 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the Catalan number. # # Output, integer C, the value of the Catalan number. # import numpy as np n_max = 11 c_vec = np.array ( ( 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796 ) ) n_vec = np.array ( ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def catalan_values_test ( ): #*****************************************************************************80 # ## CATALAN_VALUES_TEST demonstrates the use of CATALAN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 February 2009 # # Author: # # John Burkardt # print '' print 'CATALAN_VALUES_TEST:' print ' CATALAN_VALUES returns values of' print ' the Catalan numbers.' print '' print ' N C(N)' print '' n_data = 0 while ( True ): n_data, n, c = catalan_values ( n_data ) if ( n_data == 0 ): break print ' %4d %10d' % ( n, c ) # # Terminate. # print '' print 'CATALAN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) catalan_values_test ( ) timestamp ( )