#! /usr/bin/env python # def chinese_to_i4 ( n, m, r ): #*****************************************************************************80 # ## CHINESE_TO_I4 converts a set of Chinese remainders to an equivalent integer. # # Discussion: # # Given a set of N pairwise prime, positive moduluses M(I), and # a corresponding set of remainders R(I), this routine finds an # integer J such that, for all I, # # J = R(I) mod M(I) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of moduluses. # # Input, integer M(N), the moduluses. These should be positive # and pairwise prime. # # Input, integer R(N), the Chinese remainder representation of the integer. # # Output, integer J, the corresponding integer. # import numpy as np from sys import exit from chinese_check import chinese_check from congruence import congruence from i4vec_product import i4vec_product ierror = chinese_check ( n, m ) if ( ierror != 0 ): print '' print 'CHINESE_TO_I4 - Fatal error!' print ' The moduluses are not legal.' exit ( 'CHINESE_TO_I4 - Fatal error!' ) # # Set BIG_M. # big_m = i4vec_product ( n, m ) # # Solve BIG_M / M(I) * B(I) = 1, mod M(I) # b = np.zeros ( n ) for i in range ( 0, n ): a = big_m // m[i] c = 1 b[i], ierror = congruence ( a, m[i], c ) # # Set J = sum ( 1 <= I <= N ) ( R(I) * B(I) * BIG_M / M(I) ) mod M # j = 0 for i in range ( 0, n ): j = ( ( j + r[i] * b[i] * ( big_m // m[i] ) ) % big_m ) return j def chinese_to_i4_test ( ): #*****************************************************************************80 # ## CHINESE_TO_I4_TEST tests CHINESE_TO_I4. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 May 2015 # # Author: # # John Burkardt # import numpy as np from i4_to_chinese import i4_to_chinese from i4vec_print import i4vec_print n = 4 m = np.array ( [ 3, 4, 5, 7 ] ) print '' print 'CHINESE_TO_I4_TEST' print ' CHINESE_TO_I4 computes an integer with the given' print ' Chinese Remainder representation.' i4vec_print ( n, m, ' The moduli:' ) j = 37 print '' print ' The number being analyzed is %d' % ( j ) r = i4_to_chinese ( j, n, m ) i4vec_print ( n, r, ' The remainders:' ) j2 = chinese_to_i4 ( n, m, r ) print '' print ' The reconstructed number is %d' % ( j2 ) r = i4_to_chinese ( j2, n, m ) i4vec_print ( n, r, ' The remainders of the reconstructed number:' ) # # Terminate. # print '' print 'CHINESE_TO_I4_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) chinese_to_i4_test ( ) timestamp ( )