#! /usr/bin/env python # def derange_enum2 ( n ): #*****************************************************************************80 # ## DERANGE_ENUM2 returns the number of derangements of N objects. # # Discussion: # # A derangement of N objects is a permutation which leaves no object # unchanged. # # A derangement of N objects is a permutation with no fixed # points. If we symbolize the permutation operation by "P", # then for a derangment, P(I) is never equal to I. # # The number of derangements of N objects is sometimes called # the subfactorial function, or the derangement number D(N). # # Recursion: # # D(0) = 1 # D(1) = 0 # D(2) = 1 # D(N) = (N-1) * ( D(N-1) + D(N-2) ) # # or # # D(0) = 1 # D(1) = 0 # D(N) = N * D(N-1) + (-1)^N # # Formula: # # D(N) = N! * ( 1 - 1/1! + 1/2! - 1/3! ... 1/N! ) # # Based on the inclusion/exclusion law. # # D(N) is the number of ways of placing N non-attacking rooks on # an N by N chessboard with one diagonal deleted. # # Limit ( N -> Infinity ) D(N)/N! = 1 / e. # # The number of permutations with exactly K items in the right # place is COMB(N,K) * D(N-K). # # First values: # # N D(N) # 0 1 # 1 0 # 2 1 # 3 2 # 4 9 # 5 44 # 6 265 # 7 1854 # 8 14833 # 9 133496 # 10 1334961 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of objects to be permuted. # # Output, integer D(0:N), the number of derangements of N objects. # import numpy as np d = np.zeros ( n + 1 ) d[0] = 1; d[1] = 0; for i in range ( 2, n + 1 ): d[i] = ( i - 1 ) * ( d[i-1] + d[i-2] ) return d def derange_enum2_test ( ): #*****************************************************************************80 # ## DERANGE_ENUM2_TEST tests DERANGE_ENUM2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2014 # # Author: # # John Burkardt # print '' print 'DERANGE_ENUM2_TEST' print ' DERANGE_ENUM2 counts derangements;' n = 10 d = derange_enum2 ( n ) print '' print ' N # of derangements' print '' for i in range ( 0, n + 1 ): print ' %8d %8d' % ( i, d[i] ) # # Terminate. # print '' print 'DERANGE_ENUM2_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) derange_enum2_test ( ) timestamp ( )