#! /usr/bin/env python # def i4_partition_conj ( n, iarray1, mult1, npart1 ): #*****************************************************************************80 # #% I4_PARTITION_CONJ computes the conjugate of a partition. # # Discussion: # # A partition of an integer N is a set of positive integers which # add up to N. The conjugate of a partition P1 of N is another partition # P2 of N obtained in the following way: # # The first element of P2 is the number of parts of P1 greater than # or equal to 1. # # The K-th element of P2 is the number of parts of P1 greater than # or equal to K. # # Clearly, P2 will have no more than N elements it may be surprising # to find that P2 is guaranteed to be a partition of N. However, if # we symbolize the initial partition P1 by rows of X's, then we can # see that P2 is simply produced by grouping by columns: # # 6 3 2 2 1 # 5 X X X X X # 4 X X X X # 2 X X # 1 X # 1 X # 1 X # # Example: # # 14 = 5 + 4 + 2 + 1 + 1 + 1 # # The conjugate partition is: # # 14 = 6 + 3 + 2 + 2 + 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2015 # # Author: # # John Burkardt # # Parameters # # Input, integer N, the integer to be partitioned. # # Input, integer IARRAY1(NPART1). IARRAY1 contains the parts of # the partition. The value of N is represented by # # sum ( 1 <= I <= NPART1 ) MULT1(I) * IARRAY1(I). # # Input, integer MULT1(NPART1). MULT1 counts the multiplicity of # the parts of the partition. MULT1(I) is the multiplicity # of the part IARRAY1(I), for I = 1 to NPART1. # # Input, integer NPART1, the number of "parts" in the partition. # # Output, integer IARRAY2(N). IARRAY contains the parts of # the conjugate partition in entries 1 through NPART2. # # Output, integer MULT2(N). MULT2 counts the multiplicity of # the parts of the conjugate partition in entries 1 through NPART2. # # Output, integer NPART2, the number of "parts" in the conjugate partition. # import numpy as np iarray2 = np.zeros ( n ) mult2 = np.zeros ( n ) npart2 = 0 itest = 0 while ( True ): itest = itest + 1 itemp = 0 for i in range ( 0, npart1 ): if ( itest <= iarray1[i] ): itemp = itemp + mult1[i] if ( itemp <= 0 ): break if ( 0 < npart2 ): if ( itemp == iarray2[npart2-1] ): mult2[npart2-1] = mult2[npart2-1] + 1 else: npart2 = npart2 + 1 iarray2[npart2-1] = itemp mult2[npart2-1] = 1 else: npart2 = npart2 + 1 iarray2[npart2-1] = itemp mult2[npart2-1] = 1 return iarray2, mult2, npart2 def i4_partition_conj_test ( ): #*****************************************************************************80 # #% I4_PARTITION_CONJ_TEST tests I4_PARTITION_CONJ. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2015 # # Author: # # John Burkardt # import numpy as np from i4_partition_print import i4_partition_print n = 14 npart1 = 4 a1 = np.array ( [ 2, 5, 1, 4 ] ) mult1 = np.array ( [ 1, 1, 3, 1 ] ) print '' print 'I4_PARTITION_CONJ_TEST' print ' I4_PARTITION_CONJ conjugates an integer partition.' print '' print ' Original partition:' print '' i4_partition_print ( n, npart1, a1, mult1 ) a2, mult2, npart2 = i4_partition_conj ( n, a1, mult1, npart1 ) print '' print ' Conjugate partition:' print '' i4_partition_print ( n, npart2, a2, mult2 ) # # Terminate. # print '' print 'I4_PARTITION_CONJ_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_partition_conj_test ( ) timestamp ( )