#! /usr/bin/env python # def i4_partition_count ( n ): #*****************************************************************************80 # ## I4_PARTITION_COUNT computes the number of partitions of an integer. # # Discussion: # # Partition numbers are difficult to compute. This routine uses # Euler's method, which observes that: # # P(0) = 1 # P(N) = P(N-1) + P(N-2) # - P(N-5) - P(N-7) # + P(N-12) + P(N-15) # - ... # # where the numbers 1, 2, 5, 7, ... to be subtracted from N in the # indices are the successive pentagonal numbers, (with both positive # and negative indices) with the summation stopping when a negative # index is reached. # # First values: # # N P # # 0 1 # 1 1 # 2 2 # 3 3 # 4 5 # 5 7 # 6 11 # 7 15 # 8 22 # 9 30 # 10 42 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 May 2015 # # Author: # # John Burkardt # # Reference: # # John Conway and Richard Guy, # The Book of Numbers, # Springer Verlag, 1996, page 95. # # Parameters: # # Input, integer N, the index of the highest partition number desired. # # Output, integer P[0:N], the partition numbers. # import numpy as np from pent_enum import pent_enum p = np.zeros ( n + 1 ) p[0] = 1 for i in range ( 1, n + 1 ): p[i] = 0 j = 0 sgn = 1 while ( True ): j = j + 1 pj = pent_enum ( j ) if ( i < pj ): break p[i] = p[i] + sgn * p[i-pj] sgn = -sgn j = 0 sgn = 1 while ( True ): j = j - 1 pj = pent_enum ( j ); if ( i < pj ): break p[i] = p[i] + sgn * p[i-pj] sgn = -sgn return p def i4_partition_count_test ( ): #*****************************************************************************80 # ## I4_PARTITION_COUNT_TEST tests I4_PARTITION_COUNT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 May 2015 # # Author: # # John Burkardt # from i4_partition_count_values import i4_partition_count_values print '' print 'I4_PARTITION_COUNT_TEST' print ' I4_PARTITION_COUNT counts partitions of an integer.' n_data = 0 print '' print ' N Exact Count' print '' while ( True ): n_data, n, p = i4_partition_count_values ( n_data ) if ( n_data == 0 ): break p2 = i4_partition_count ( n ) print ' %4d %8d %8d' % ( n, p, p2[n] ) # # Terminate. # print '' print 'I4_PARTITION_COUNT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_partition_count_test ( ) timestamp ( )