#! /usr/bin/env python # def i4_partition_count2 ( n ): #*****************************************************************************80 # ## I4_PARTITION_COUNT2 computes the number of partitions of an integer. # # First values: # # N P # # 0 1 # 1 1 # 2 2 # 3 3 # 4 5 # 5 7 # 6 11 # 7 15 # 8 22 # 9 30 # 10 42 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2015 # # Author: # # John Burkardt. # # Reference: # # Albert Nijenhuis, Herbert Wilf, # Combinatorial Algorithms, # Academic Press, 1978, second edition, # ISBN 0-12-519260-6. # # Parameters: # # Input, integer N, the largest integer to be considered. # # Output, integer P[0:N], the partition numbers. # import numpy as np p = np.zeros ( n + 1 ) p[0] = 1 if ( 0 < n ): p[1] = 1 for i in range ( 2, n + 1 ): total = 0 for t in range ( 1, i + 1 ): s = 0 j = i while ( True ): j = j - t if ( 0 < j ): s = s + p[j] else: if ( j == 0 ): s = s + 1 break total = total + s * t; p[i] = ( total // i ) return p def i4_partition_count2_test ( ): #*****************************************************************************80 # ## I4_PARTITION_COUNT2_TEST tests I4_PARTITION_COUNT2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2015 # # Author: # # John Burkardt # from i4_partition_count_values import i4_partition_count_values print '' print 'I4_PARTITION_COUNT2_TEST' print ' I4_PARTITION_COUNT2 counts partitions of an integer.' n_data = 0 print '' print ' N Exact Count' print '' while ( True ): n_data, n, p = i4_partition_count_values ( n_data ) if ( n_data == 0 ): break p2 = i4_partition_count2 ( n ) print ' %4d %8d %8d' % ( n, p, p2[n] ) # # Terminate. # print '' print 'I4_PARTITION_COUNT2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_partition_count2_test ( ) timestamp ( )