#! /usr/bin/env python # def i4poly_print ( n, a, title ): #*****************************************************************************80 # ## I4POLY_PRINT prints out a polynomial. # # Discussion: # # The power sum form is: # # p(x) = a(0) + a(1)*x + ... + a(n-1)*x^(n-1) + a(n)*x^(n) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of A. # # Input, integer A(1:N+1), the polynomial coefficients. # A(1) is the constant term and # A(N+1) is the coefficient of X**N. # # Input, character TITLE(*), an optional title. # from i4poly_degree import i4poly_degree if ( 0 < len ( title ) ): print '' print title print '' n2 = i4poly_degree ( n, a ) if ( a[n2] < 0 ): plus_minus = '-' else: plus_minus = ' ' mag = abs ( a[n2] ) if ( 2 <= n2 ): print ' p(x) = %c%d * x^%d' % ( plus_minus, mag, n2 ) elif ( n2 == 1 ): print ' p(x) = %c%d * x' % ( plus_minus, mag ) elif ( n2 == 0 ): print ' p(x) = %c%d' % ( plus_minus, mag ) for i in range ( n2 - 1, -1, -1 ): if ( a[i] < 0.0 ): plus_minus = '-' else: plus_minus = '+' mag = abs ( a[i] ) if ( mag != 0 ): if ( 2 <= i ): print ' %c%d * x^%d' % ( plus_minus, mag, i ) elif ( i == 1 ): print ' %c%d * x' % ( plus_minus, mag ) elif ( i == 0 ): print ' %c%d' % ( plus_minus, mag ) return def i4poly_print_test ( ): #*****************************************************************************80 # ## I4POLY_PRINT_TEST tests I4POLY_PRINT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 May 2015 # # Author: # # John Burkardt # import numpy as np print '' print 'I4POLY_PRINT_TEST' print ' I4POLY_PRINT prints an I4POLY.' n = 4 a = np.array ( [ -2, 5, 2, 3, 1 ] ) i4poly_print ( n, a, ' The polynomial:' ) # # Terminate. # print '' print 'I4POLY_PRINT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4poly_print_test ( ) timestamp ( )