#! /usr/bin/env python # def inverse_mod_n ( b, n ): #*****************************************************************************80 # ## INVERSE_MOD_N computes the inverse of B mod N. # # Discussion: # # If # # Y = inverse_mod_n ( B, N ) # # then # # mod ( B * Y, N ) = 1 # # The value Y will exist if and only if B and N are relatively prime. # # Examples: # # B N Y # # 1 2 1 # # 1 3 1 # 2 3 2 # # 1 4 1 # 2 4 0 # 3 4 3 # # 1 5 1 # 2 5 3 # 3 5 2 # 4 5 4 # # 1 6 1 # 2 6 0 # 3 6 0 # 4 6 0 # 5 6 5 # # 1 7 1 # 2 7 4 # 3 7 5 # 4 7 2 # 5 7 3 # 6 7 6 # # 1 8 1 # 2 8 0 # 3 8 3 # 4 8 0 # 5 8 5 # 6 8 0 # 7 8 7 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer B, the number whose inverse mod N is desired. # B should be positive. Normally, B < N, but this is not required. # # Input, integer N, the number with respect to which the # modulus is computed. N should be positive. # # Output, integer Y, the inverse of B mod N, or 0 if there # is not inverse for B mode N. 1 <= Y < N if the inverse exists. # n0 = n b0 = b t0 = 0 t = 1 q = ( n // b ) r = n - q * b while ( 0 < r ): temp = t0 - q * t if ( 0 <= temp ): temp = ( temp % n ) if ( temp < 0 ): temp = n - ( ( - temp ) % n ) t0 = t t = temp n0 = b0 b0 = r q = ( n0 // b0 ) r = n0 - q * b0 if ( b0 != 1 ): y = 0 else: y = ( t % n ) return y def inverse_mod_n_test ( ): #*****************************************************************************80 # ## INVERSE_MOD_N_TEST tests INVERSE_MOD_N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 May 2015 # # Author: # # John Burkardt # print '' print 'INVERSE_MOD_N_TEST' print ' INVERSE_MOD_N seeks Y, the inverse of B mod N,' print ' so that mod ( B * Y, N ) = 1, but returns 0' print ' if the inverse does not exist.' print '' print ' B N Y Z = mod ( B * Y, N )' for n in range ( 1, 11 ): print '' for b in range ( 1, n ): y = inverse_mod_n ( b, n ) z = ( ( b * y ) % n ) print ' %4d %4d %4d %4d' % ( b, n, y, z ) # # Terminate. # print '' print 'INVERSE_MOD_N_TEST' print ' Normal end of execution' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) inverse_mod_n_test ( ) timestamp ( )