#! /usr/bin/env python # def involute_enum ( n ): #*****************************************************************************80 # ## INVOLUTE_ENUM enumerates the involutions of N objects. # # Discussion: # # An involution is a permutation consisting only of fixed points and # pairwise transpositions. # # An involution is its own inverse permutation. # # Recursion: # # S(0) = 1 # S(1) = 1 # S(N) = S(N-1) + (N-1) * S(N-2) # # First values: # # N S(N) # 0 1 # 1 1 # 2 2 # 3 4 # 4 10 # 5 26 # 6 76 # 7 232 # 8 764 # 9 2620 # 10 9496 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of objects to be permuted. # # Output, integer S(0:N), the number of involutions of 0, 1, 2, ... N # objects. # import numpy as np s = np.zeros ( n + 1 ) s[0] = 1 if ( n <= 0 ): return s s[1] = 1 for i in range ( 2, n + 1 ): s[i] = s[i-1] + ( i - 1 ) * s[i-2] return s def involute_enum_test ( ): #*****************************************************************************80 # ## INVOLUTE_ENUM_TEST tests INVOLUTE_ENUM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 December 2014 # # Author: # # John Burkardt # n = 10 print '' print 'INVOLUTE_ENUM_TEST' print ' INVOLUTE_ENUM counts involutions;' print '' print ' N # of involutions' print '' s = involute_enum ( n ) for i in range ( 0, n + 1 ): print ' %8d %8d' % ( i, s[i] ) # # Terminate. # print '' print 'INVOLUTE_ENUM_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) involute_enum_test ( ) timestamp ( )