#!/usr/bin/env python def perrin ( n ): #*****************************************************************************80 # ## PERRIN returns the first N values of the Perrin sequence. # # Discussion: # # The Perrin sequence has the initial values: # # P(0) = 3 # P(1) = 0 # P(2) = 2 # # and subsequent entries are generated by the recurrence # # P(I+1) = P(I-1) + P(I-2) # # Note that if N is a prime, then N must evenly divide P(N). # # Example: # # 0 3 # 1 0 # 2 2 # 3 3 # 4 2 # 5 5 # 6 5 # 7 7 # 8 10 # 9 12 # 10 17 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 May 2015 # # Author: # # John Burkardt # # Reference: # # Ian Stewart, # "A Neglected Number", # Scientific American, Volume 274, pages 102-102, June 1996. # # Ian Stewart, # Math Hysteria, # Oxford, 2004. # # Eric Weisstein, # CRC Concise Encyclopedia of Mathematics, # CRC Press, 1999. # # Parameters: # # Input, integer N, the number of terms. # # Output, integer P(N), the first N terms of the sequence. # import numpy as np p = np.zeros ( n ) if ( 0 < n ): p[0] = 3 if ( 1 < n ): p[1] = 0 if ( 2 < n ): p[2] = 2 for i in range ( 3, n ): p[i] = p[i-2] + p[i-3] return p def perrin_test ( ): #*****************************************************************************80 # ## PERRIN_TEST tests PERRIN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 May 2015 # # Author: # # John Burkardt # from i4vec_print import i4vec_print n = 20 print '' print 'PERRIN_TEST' print ' PERRIN computes the Perrin numbers.' p = perrin ( n ) i4vec_print ( n, p, ' The Perrin sequence:' ) # # Terminate. # print '' print 'PERRIN_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) perrin_test ( ) timestamp ( )