#! /usr/bin/env python # def power_mod ( a, n, m ): #*****************************************************************************80 # ## POWER_MOD computes mod ( A^N, M ). # # Discussion: # # Some programming tricks are used to speed up the computation, and to # allow computations in which A^N is much too large to store in a # real word. # # First, for efficiency, the power A^N is computed by determining # the binary expansion of N, then computing A, A^2, A^4, and so on # by repeated squaring, and multiplying only those factors that # contribute to A^N. # # Secondly, the intermediate products are immediately "mod'ed", which # keeps them small. # # For instance, to compute mod ( A^13, 11 ), we essentially compute # # 13 = 1 + 4 + 8 # # A^13 = A * A^4 * A^8 # # mod ( A^13, 11 ) = mod ( A, 11 ) * mod ( A^4, 11 ) * mod ( A^8, 11 ). # # Fermat's little theorem says that if P is prime, and A is not divisible # by P, then ( A^(P-1) - 1 ) is divisible by P. # # Example: # # A N M X # # 13 0 31 1 # 13 1 31 13 # 13 2 31 14 # 13 3 31 27 # 13 4 31 10 # 13 5 31 6 # 13 6 31 16 # 13 7 31 22 # 13 8 31 7 # 13 9 31 29 # 13 10 31 5 # 13 11 31 3 # 13 12 31 8 # 13 13 31 11 # 13 14 31 19 # 13 15 31 30 # 13 16 31 18 # 13 17 31 17 # 13 18 31 4 # 13 19 31 21 # 13 20 31 25 # 13 21 31 15 # 13 22 31 9 # 13 23 31 24 # 13 24 31 2 # 13 25 31 26 # 13 26 31 28 # 13 27 31 23 # 13 28 31 20 # 13 29 31 12 # 13 30 31 1 # 13 31 31 13 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 November 2004 # # Author: # # John Burkardt # # Parameters: # # Input, integer A, the base of the expression to be tested. # A should be nonnegative. # # Input, integer N, the power to which the base is raised. # N should be nonnegative. # # Input, integer M, the divisor against which the expression is tested. # M should be positive. # # Output, integer X, the remainder when A^N is divided by M. # if ( a < 0 ): x = -1 return x if ( int ( a ) != a ): x = -1 return x if ( n < 0 ): x = -1 return x if ( int ( n ) != n ): x = -1 return x if ( m <= 0 ): x = -1 return x if ( int ( m ) != m ): x = -1 return x # # A contains the successive squares of A. # x = 1 while ( 0 < n ): d = ( n % 2 ) if ( d == 1 ): x = ( ( x * a ) % m ) a = ( ( a * a ) % m ) n = ( ( n - d ) // 2 ) # # Ensure that 0 <= X. # while ( x < 0 ): x = x + m return x def power_mod_test ( ): #*****************************************************************************80 # ## POWER_MOD_TEST tests POWER_MOD. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 May 2015 # # Author: # # John Burkardt # print '' print 'POWER_MOD_TEST' print ' POWER_MOD computes the remainder of a power' print ' of an integer modulo another integer.' a = 7 n = 50 m = 11 x = power_mod ( a, n, m ) print '' print ' A = %d' % ( a ) print ' N = %d' % ( n ) print ' M = %d' % ( m ) print ' mod ( A^N, M ) = %d' % ( x ) a = 3 n = 118 m = 119 x = power_mod ( a, n, m ) print '' print ' A = %d' % ( a ) print ' N = %d' % ( n ) print ' M = %d' % ( m ) print ' mod ( A^N, M ) = %d' % ( x ) # # Terminate. # print '' print 'POWER_MOD_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) power_mod_test ( ) timestamp ( )