#! /usr/bin/env python # def r8poly_dif ( na, a, d ): #*****************************************************************************80 # ## R8POLY_DIF differentiates an R8POLY. # # Discussion: # # The polynomials are in power sum form. # # The power sum form is: # # p(x) = a(0) + a(1)*x + ... + a(n-1)*x^(n-1) + a(n)*x^(n) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer NA, the degree of polynomial A. # # Input, real A[0:NA], the coefficients of a polynomial. # # Input, integer D, the number of times the polynomial # is to be differentiated. # # Output, real B[0:NA-D], the coefficients of the # differentiated polynomial. # import numpy as np from r8_fall import r8_fall if ( na < d ): b = np.zeros ( 1 ) return b nb = na - d b = np.zeros ( nb + 1 ) for i in range ( 0, nb + 1 ): b[i] = a[i+d] * r8_fall ( i + d, d ) return b def r8poly_dif_test ( ): #*****************************************************************************80 # ## R8POLY_DIF_TEST tests R8POLY_DIF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 May 2015 # # Author: # # John Burkardt # import numpy as np from r8poly_print import r8poly_print test_num = 2 print '' print 'R8POLY_DIF_TEST' print ' R8POLY_DIF computes derivatives of an R8POLY.' # # 1: Differentiate X^3 + 2*X^2 - 5*X - 6 once. # 2: Differentiate X^4 + 3*X^3 + 2*X^2 - 2 3 times. # for test in range ( 0, 2 ): if ( test == 0 ): na = 3 d = 1 a = np.array ( [ -6.0, -5.0, 2.0, 1.0 ] ) elif ( test == 1 ): na = 4 d = 3 a = np.array ( [ -2.0, 5.0, 2.0, 3.0, 1.0 ] ) r8poly_print ( na, a, ' The polynomial A:' ) print '' print ' Differentiate A %d times.' % ( d ) b = r8poly_dif ( na, a, d ) r8poly_print ( na - d, b, ' The derivative, B:' ) # # Terminate. # print '' print 'R8POLY_DIF_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8poly_dif_test ( ) timestamp ( )