#! /usr/bin/env python # def schroeder ( n ): #*****************************************************************************80 # ## SCHROEDER generates the Schroeder numbers. # # Discussion: # # The Schroeder number S(N) counts the number of ways to insert # parentheses into an expression of N items, with two or more items within # a parenthesis. # # Note that the Catalan number C(N) counts the number of ways # to legally arrange a set of N left and N right parentheses. # # Example: # # N = 4 # # 1234 # 12(34) # 1(234) # 1(2(34)) # 1(23)4 # 1((23)4) # (123)4 # (12)34 # (12)(34) # (1(23))4 # ((12)3)4 # # First Values: # # 1 # 1 # 3 # 11 # 45 # 197 # 903 # 4279 # 20793 # 103049 # 518859 # 2646723 # 13648869 # 71039373 # # Formula: # # S(N) = ( P(N)(3.0) - 3 P(N-1)(3.0) ) / ( 4 * ( N - 1 ) ) # where P(N)(X) is the N-th Legendre polynomial. # # Recursion: # # S(1) = 1 # S(2) = 1 # S(N) = ( ( 6 * N - 9 ) * S(N-1) - ( N - 3 ) * S(N-2) ) / N # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 May 2015 # # Author: # # John Burkardt # # Reference: # # R P Stanley, # Hipparchus, Plutarch, Schroeder, and Hough, # American Mathematical Monthly, # Volume 104, Number 4, 1997, pages 344-350. # # Laurent Habsieger, Maxim Kazarian, Sergei Lando, # On the Second Number of Plutarch, # American Mathematical Monthly, May 1998, page 446. # # Parameters: # # Input, integer N, the number of Schroeder numbers desired. # # Output, integer S(N), the Schroeder numbers. # import numpy as np s = np.zeros ( n, dtype = np.int32 ) if ( 1 <= n ): s[0] = 1 if ( 2 <= n ): s[1] = 1 for i in range ( 3, n + 1 ): s[i-1] = ( ( 6 * i - 9 ) * s[i-2] - ( i - 3 ) * s[i-3] ) // i return s def schroeder_test ( ): #*****************************************************************************80 # ## SCHROEDER_TEST tests SCHROEDER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 May 2015 # # Author: # # John Burkardt # n = 10 print '' print 'SCHROEDER_TEST' print ' SCHROEDER computes the Schroeder numbers.' s = schroeder ( n ) print '' print ' N S(N)' print '' for i in range ( 0, n ): print ' %4d %8d' % ( i, s[i] ) # # Terminate. # print '' print 'SCHROEDER_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) schroeder_test ( ) timestamp ( )