#! /usr/bin/env python # def aegerter ( n ): #*****************************************************************************80 # ## AEGERTER returns the AEGERTER matrix. # # Formula: # # if ( I == N ) # A(I,J) = J # else if ( J == N ) # A(I,J) = I # else if ( I == J ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # N = 5 # # 1 0 0 0 1 # 0 1 0 0 2 # 0 0 1 0 3 # 0 0 0 1 4 # 1 2 3 4 5 # # Square Properties: # # A is integral: int ( A ) = A. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is border-banded. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == n - 1 ): a[i,j] = j + 1 elif ( j == n - 1 ): a[i,j] = i + 1 elif ( i == j ): a[i,j] = 1.0 else: a[i,j] = 0.0 return a def aegerter_condition ( n ): #*****************************************************************************80 # ## AEGERTER_CONDITION returns the L1 condition of the AEGERTER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real COND, the L1 condition. # from r8mat_norm_l1 import r8mat_norm_l1 a = aegerter ( n ) a_norm = r8mat_norm_l1 ( n, n, a ) b = aegerter_inverse ( n ) b_norm = r8mat_norm_l1 ( n, n, b ) rcond = a_norm * b_norm return rcond def aegerter_condition_test ( ): #*****************************************************************************80 # ## AEGERTER_CONDITION_TEST tests AEGERTER_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # print '' print 'AEGERTER_CONDITION_TEST' print ' AEGERTER_CONDITION computes the condition of the Aegerter matrix.' print '' print ' N Cond(Aergerter(N))' print '' for n in range ( 1, 11 ): c = aegerter_condition ( n ) print ' %4d %8g' % ( n, c ) print '' print 'AEGERTER_CONDITION_TEST' print ' Normal end of execution.' return def aegerter_determinant ( n ): #*****************************************************************************80 # ## AEGERTER_DETERMINANT returns the determinant of the AEGERTER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns of A. # # Output, real DETERM, the determinant. # determ = ( n - ( ( n - 1 ) * n * ( 2 * n - 1 ) ) / 6 ); return determ def aegerter_determinant_test ( ): #*****************************************************************************80 # ## AEGERTER_DETERMINANT_TEST tests AEGERTER_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # print '' print 'AEGERTER_DETERMINANT_TEST' print ' AEGERTER_DETERMINANT computes the Aegerter determinant.' for n in range ( 1, 11 ): d = aegerter_determinant ( n ) print ' %4d %8g' % ( n, d ) print '' print 'AEGERTER_DETERMINANT_TEST' print ' Normal end of execution.' return def aegerter_eigenvalues ( n ): #*****************************************************************************80 # ## AEGERTER_EIGENVALUES returns the eigenvalues of the AEGERTER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns of A. # # Output, real LAM(N), the eigenvalues. # import numpy as np from math import sqrt lam = np.zeros ( n ) determ = n - ( ( n - 1 ) * n * ( 2 * n - 1 ) ) / 6 lam[0] = 0.5 * ( n + 1 - sqrt ( ( n + 1 ) ** 2 - 4.0 * determ ) ) for i in range ( 1, n - 1 ): lam[i] = 1.0 lam[n-1] = 0.5 * ( n + 1 + sqrt ( ( n + 1 ) ** 2 - 4.0 * determ ) ) return lam def aegerter_eigenvalues_test ( ): #*****************************************************************************80 # ## AEGERTER_EIGENVALUES_TEST tests AEGERTER_EIGENVALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # from r8vec_print import r8vec_print print '' print 'AEGERTER_EIGENVALUES_TEST' print ' AEGERTER_EIGENVALUES computes the eigenvalues of the Aegerter matrix.' n = 5 lam = aegerter_eigenvalues ( n ) r8vec_print ( n, lam, ' Aergerter eigenvalues:' ) print '' print 'AEGERTER_EIGENVALUES_TEST' print ' Normal end of execution.' return def aegerter_inverse ( n ): #*****************************************************************************80 # ## AEGERTER_INVERSE returns the inverse of the AEGERTER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) v = np.zeros ( n ) for i in range ( 0, n - 1 ): v[i] = i + 1 for j in range ( 0, n - 1 ): a[j,j] = 1.0 for i in range ( 0, n - 1 ): a[i,j] = a[i,j] - v[i] * v[j] / ( n * n ) for i in range ( 0, n - 1 ): a[i,n-1] = v[i] / ( n * n ) for j in range ( 0, n - 1 ): a[n-1,j] = v[j] / ( n * n ) a[n-1,n-1] = - 1.0 / ( n * n ) return a def aegerter_inverse_test ( ): #*****************************************************************************80 # ## AEGERTER_INVERSE_TEST tests AEGERTER_INVERSE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'AEGERTER_INVERSE_TEST' print ' AEGERTER_INVERSE computes the inverse of the Aegerter matrix.' n = 5 b = aegerter_inverse ( n ) r8mat_print ( n, n, b, ' Aergerter inverse:' ) print '' print 'AEGERTER_INVERSE_TEST' print ' Normal end of execution.' return def aegerter_test ( ): #*****************************************************************************80 # ## AEGERTER_TEST tests AEGERTER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'AEGERTER_TEST' print ' AEGERTER computes the Aegerter matrix.' n = 5 b = aegerter ( n ) r8mat_print ( n, n, b, ' Aergerter matrix:' ) print '' print 'AEGERTER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) aegerter_test ( ) timestamp ( )