#! /usr/bin/env python # def bab ( n, alpha, beta ): #*****************************************************************************80 # ## BAB returns the BAB matrix. # # Example: # # N = 5 # ALPHA = 5, BETA = 2 # # 5 2 . . . # 2 5 2 . . # . 2 5 2 . # . . 2 5 2 # . . . 2 5 # # Properties: # # A is banded, with bandwidth 3. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is Toeplitz: constant along diagonals. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 November 2007 # # Author: # # John Burkardt # # Reference: # # CM da Fonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, BETA, the parameters. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = alpha for i in range ( 0, n - 1 ): a[i,i+1] = beta a[i+1,i] = beta return a def bab_condition ( n, alpha, beta ): #*****************************************************************************80 # ## BAB_CONDITION returns the L1 condition of the BAB matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, BETA, the parameters. # # Output, real COND, the L1 condition number. # from r8mat_norm_l1 import r8mat_norm_l1 a = bab ( n, alpha, beta ) a_norm = r8mat_norm_l1 ( n, n, a ) b = bab_inverse ( n, alpha, beta ) b_norm = r8mat_norm_l1 ( n, n, b ) cond = a_norm * b_norm return cond def bab_condition_test ( ): #*****************************************************************************80 # ## BAB_CONDITION_TEST tests BAB_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BAB_CONDITION_TEST' print ' BAB_CONDITION computes the condition of the BAB matrix.' print '' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) a = bab ( n, alpha, beta ) r8mat_print ( n, n, a, ' BAB matrix:' ) value = bab_condition ( n, alpha, beta ) print '' print ' Valule = %g' % ( value ) print '' print 'BAB_CONDITION_TEST' print ' Normal end of execution.' return def bab_determinant ( n, alpha, beta ): #*****************************************************************************80 # ## BAB_DETERMINANT computes the determinant of the BAB matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, BETA, parameters that define the matrix. # # Output, real DETERM, the determinant. # determ_nm1 = alpha if ( n == 1 ): determ = determ_nm1 return determ determ_nm2 = determ_nm1 determ_nm1 = alpha * alpha - beta * beta if ( n == 2 ): determ = determ_nm1 return determ for i in range ( n - 2, 0, -1 ): determ = alpha * determ_nm1 - beta * beta * determ_nm2 determ_nm2 = determ_nm1 determ_nm1 = determ return determ def bab_determinant_test ( ): #*****************************************************************************80 # ## BAB_DETERMINANT_TEST tests BAB_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BAB_DETERMINANT_TEST' print ' BAB_DETERMINANT computes the BAB determinant.' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) a = bab ( n, alpha, beta ) r8mat_print ( n, n, a, ' BAB matrix:' ) value = bab_determinant ( n, alpha, beta ) print ' Value = %g' % ( value ) print '' print 'BAB_DETERMINANT_TEST' print ' Normal end of execution.' return def bab_eigen_right ( n, alpha, beta ): #*****************************************************************************80 # ## BAB_EIGEN_RIGHT returns the right eigenvectors of the BAB matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real ALPHA, BETA, the parameters. # # Output, real A(N,N), the right eigenvector matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( ( i + 1 ) * ( j + 1 ) ) * np.pi / float ( n + 1 ) a[i,j] = np.sqrt ( 2.0 / float ( n + 1 ) ) * np.sin ( angle ) return a def bab_eigenvalues ( n, alpha, beta ): #*****************************************************************************80 # ## BAB_EIGENVALUES returns the eigenvalues of the BAB matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, BETA, the parameters. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n ): angle = float ( i + 1 ) * np.pi / float ( n + 1 ) lam[i] = alpha + 2.0 * beta * np.cos ( angle ) return lam def bab_inverse ( n, alpha, beta ): #*****************************************************************************80 # ## BAB_INVERSE returns the inverse of the BAB matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, BETA, the parameters. # # Output, real A(N,N), the matrix. # from sys import exit import numpy as np from cheby_u_polynomial import cheby_u_polynomial from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) if ( beta == 0.0 ): if ( alpha == 0.0 ): print '' print 'BAB_INVERSE - Fatal error!' print ' ALPHA = BETA = 0.' exit ( 'BAB_INVERSE - Fatal error!' ) for i in range ( 0, n ): a[i,i] = 1.0 / alpha else: x = 0.5 * alpha / beta u = cheby_u_polynomial ( n, x ) for i in range ( 1, n + 1 ): for j in range ( 1, i + 1 ): a[i-1,j-1] = r8_mop ( i + j ) * u[j-1] * u[n-i] / u[n] / beta for j in range ( i + 1, n + 1 ): a[i-1,j-1] = r8_mop ( i + j ) * u[i-1] * u[n-j] / u[n] / beta return a def bab_inverse_test ( ): #*****************************************************************************80 # ## BAB_INVERSE_TEST tests BAB_INVERSE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BAB_INVERSE_TEST' print ' BAB_INVERSE computes the inverse of the BAB matrix.' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) b = bab_inverse ( n, alpha, beta ) r8mat_print ( n, n, b, ' BAB inverse:' ) print '' print 'BAB_INVERSE_TEST' print ' Normal end of execution.' return def bab_test ( ): #*****************************************************************************80 # ## BAB_TEST tests BAB. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BAB_TEST' print ' BAB computes the BAB matrix.' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) a = bab ( n, alpha, beta ) r8mat_print ( n, n, a, ' BAB matrix:' ) print '' print 'BAB_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bab_test ( ) timestamp ( )