#! /usr/bin/env python # def bis ( alpha, beta, m, n ): #*****************************************************************************80 # ## BIS returns the BIS matrix. # # Discussion: # # BIS is a bidiagonal scalar matrix. # # Formula: # # if ( I = J ) # A(I,J) = ALPHA # else if ( J = I+1 ) # A(I,J) = BETA # else # A(I,J) = 0 # # Example: # # ALPHA = 7, BETA = 2, M = 5, N = 4 # # 7 2 0 0 # 0 7 2 0 # 0 0 7 2 # 0 0 0 7 # 0 0 0 0 # # Rectangular Properties: # # A is bidiagonal. # # Because A is bidiagonal, it has property A (bipartite). # # A is upper triangular. # # A is banded with bandwidth 2. # # A is Toeplitz: constant along diagonals. # # Square Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular if and only if ALPHA is nonzero. # # det ( A ) = ALPHA^N. # # LAMBDA(1:N) = ALPHA. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, the scalars which define the # diagonal and first superdiagonal of the matrix. # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for i in range ( 0, m ): for j in range ( 0, n ): if ( j == i ): a[i,j] = alpha elif ( j == i + 1 ): a[i,j] = beta else: a[i,j] = 0.0 return a def bis_condition ( alpha, beta, n ): #*****************************************************************************80 # ## BIS_CONDITION computes the L1 condition of the BIS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, the scalars which define the # diagonal and first superdiagonal of the matrix. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = abs ( alpha ) + abs ( beta ) ba = abs ( beta / alpha ) b_norm = ( ba ** n - 1.0 ) / ( ba - 1.0 ) / abs ( alpha ) value = a_norm * b_norm return value def bis_condition_test ( ): #*****************************************************************************80 # ## BIS_CONDITION_TEST tests BIS_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 January 2015 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BIS_CONDITION_TEST' print ' BIS_CONDITION computes the BIS condition.' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) a = bis ( alpha, beta, n, n ) r8mat_print ( n, n, a, ' BIS matrix:' ) value = bis_condition ( alpha, beta, n ) print ' Value = %g' % ( value ) print '' print 'BIS_CONDITION_TEST' print ' Normal end of execution.' return def bis_determinant ( alpha, beta, n ): #*****************************************************************************80 # ## BIS_DETERMINANT computes the determinant of the BIS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, the scalars which define the # diagonal and first superdiagonal of the matrix. # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = alpha ** n return determ def bis_determinant_test ( ): #*****************************************************************************80 # ## BIS_DETERMINANT_TEST tests BIS_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BIS_DETERMINANT_TEST' print ' BIS_DETERMINANT computes the BIS determinant.' seed = 123456789 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) a = bis ( alpha, beta, n, n ) r8mat_print ( n, n, a, ' BIS matrix:' ) value = bis_determinant ( alpha, beta, n ) print ' Value = %g' % ( value ) print '' print 'BIS_DETERMINANT_TEST' print ' Normal end of execution.' return def bis_inverse ( alpha, beta, n ): #*****************************************************************************80 # #% BIS_INVERSE returns the inverse of a bidiagonal scalar matrix. # # Formula: # # if ( I <= J ) # A(I,J) = (-BETA)^(J-I) / ALPHA^(J+1-I) # else # A(I,J) = 0 # # Example: # # ALPHA = 7.0, BETA = 2.0, N = 4 # # 0.1429 -0.0408 0.0117 -0.0033 # 0 0.1429 -0.0408 0.0117 # 0 0 0.1429 -0.0408 # 0 0 0 0.1429 # # Properties: # # A is generally not symmetric: A' /= A. # # A is upper triangular # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # det ( A ) = (1/ALPHA)^N. # # LAMBDA(1:N) = 1 / ALPHA. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, the scalars which define the # diagonal and first superdiagonal of the matrix. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( n, n ) ) if ( alpha == 0.0 ): print '' print 'BIS_INVERSE - Fatal error!' print ' The input parameter ALPHA was 0.' exit ( 'BIS_INVERSE - Fatal error!' ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = ( - beta ) ** ( j - i ) / alpha ** ( j - i + 1 ) return a def bis_test ( ): #*****************************************************************************80 # ## BIS_TEST tests BIS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'BIS_TEST' print ' BIS computes the BIS matrix.' seed = 123456789 m = 5 n = 5 alpha, seed = r8_uniform_01 ( seed ) beta, seed = r8_uniform_01 ( seed ) a = bis ( alpha, beta, m, n ) r8mat_print ( m, n, a, ' BIS matrix:' ) print '' print 'BIS_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bis_test ( ) timestamp ( )