#! /usr/bin/env python # def biw ( n ): #*****************************************************************************80 # ## BIW returns the BIW matrix. # # Discussion: # # BIW is a bidiagonal matrix of Wilkinson. Originally, this matrix # was considered for N = 100. # # Formula: # # if ( I == J ) # A(I,J) = 0.5 + I / ( 10 * N ) # else if ( J == I+1 ) # A(I,J) = -1.0 # else # A(I,J) = 0 # # Example: # # N = 5 # # 0.52 -1.00 0.00 0.00 0.00 # 0.00 0.54 -1.00 0.00 0.00 # 0.00 0.00 0.56 -1.00 0.00 # 0.00 0.00 0.00 0.58 -1.00 # 0.00 0.00 0.00 0.00 0.60 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): a[i,i] = 0.5 + float ( i + 1 ) / float ( 10 * n ) for i in range ( 0, n - 1 ): a[i,i+1] = - 1.0 return a def biw_condition ( n ): #*****************************************************************************80 # ## BIW_CONDITION computes the L1 condition of the BIW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # if ( n == 1 ): a_norm = 0.6 else: a_norm = 1.6 b_norm = 0.0 j = n for i in range ( n, 0, -1 ): aii = 0.5 + ( float ) ( i ) / float ( 10 * n ) if ( i == j ): bij = 1.0 / aii elif ( i < j ): bij = bij / aii b_norm = b_norm + abs ( bij ) value = a_norm * b_norm return value def biw_determinant ( n ): #*****************************************************************************80 # ## BIW_DETERMINANT computes the determinant of the BIW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 for i in range ( 0, n ): value = value * ( 0.5 + float ( i + 1 ) / float ( 10 * n ) ) return value def biw_determinant_test ( ): #*****************************************************************************80 # ## BIW_DETERMINANT_TEST tests BIW_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'BIW_DETERMINANT_TEST' print ' BIW_DETERMINANT computes the BIW determinant.' n = 5 a = biw ( n ) r8mat_print ( n, n, a, ' BIW matrix:' ) value = biw_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'BIW_DETERMINANT_TEST' print ' Normal end of execution.' return def biw_inverse ( n ): #*****************************************************************************80 # ## BIW_INVERSE returns the inverse of the BIW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np b = np.zeros ( [ n, n ] ) for j in range ( n - 1, -1, -1 ): for i in range ( n - 1, -1, -1 ): aii = 0.5 + float ( i + 1 ) / float ( 10 * n ) aiip1 = -1.0 if ( i == j ): b[i,j] = 1.0 / aii elif ( i < j ): t = aiip1 * b[i+1,j] b[i,j] = - t / aii return b def biw_test ( ): #*****************************************************************************80 # ## BIW_TEST tests BIW. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'BIW_TEST' print ' BIW computes the BIW matrix.' m = 5 n = 5 a = biw ( n ) r8mat_print ( m, n, a, ' BIW matrix:' ) print '' print 'BIW_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) biw_test ( ) biw_determinant_test ( ) timestamp ( )