#! /usr/bin/env python # def bodewig ( ): #*****************************************************************************80 # ## BODEWIG returns the BODEWIG matrix. # # Example: # # 2 1 3 4 # 1 -3 1 5 # 3 1 6 -2 # 4 5 -2 -1 # # Properties: # # A is symmetric: A' = A. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # Test Matrix A27, # A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, # John Wiley, 1968. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 2.0, 1.0, 3.0, 4.0 ], \ [ 1.0, -3.0, 1.0, 5.0 ], \ [ 3.0, 1.0, 6.0, -2.0 ], \ [ 4.0, 5.0, -2.0, -1.0 ] ] ) return a def bodewig_condition ( ): #*****************************************************************************80 # ## BODEWIG_CONDITION returns the L1 condition of the BODEWIG matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the L1 condition number. # value = 10.436619718309862 return value def bodewig_condition_test ( ): #*****************************************************************************80 # ## BODEWIG_CONDITION_TEST tests BODEWIG_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from bodewig import bodewig from r8mat_print import r8mat_print print '' print 'BODEWIG_CONDITION_TEST' print ' BODEWIG_CONDITION computes the condition of the BODEWIG matrix.' print '' seed = 123456789 n = 4 a = bodewig ( ) r8mat_print ( n, n, a, ' BODEWIG matrix:' ) value = bodewig_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'BODEWIG_CONDITION_TEST' print ' Normal end of execution.' return def bodewig_determinant ( ): #*****************************************************************************80 # ## BODEWIG_DETERMINANT computes the determinant of the BODEWIG matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # # Parameters: # # Output, real DETERM, the determinant. # determ = 568.0 return determ def bodewig_determinant_test ( ): #*****************************************************************************80 # ## BODEWIG_DETERMINANT_TEST tests BODEWIG_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # from bodewig import bodewig from r8mat_print import r8mat_print print '' print 'BODEWIG_DETERMINANT_TEST' print ' BODEWIG_DETERMINANT computes the BODEWIG determinant.' m = 4 n = 4 a = bodewig ( ) r8mat_print ( n, n, a, ' BODEWIG matrix:' ) value = bodewig_determinant ( ) print ' Value = %g' % ( value ) print '' print 'BODEWIG_DETERMINANT_TEST' print ' Normal end of execution.' return def bodewig_eigen_right ( ): #*****************************************************************************80 # ## BODEWIG_EIGEN_RIGHT returns the right eigenvectors of the BODEWIG matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 0.263462395147524, 0.560144509774526, \ 0.378702689441644, -0.688047939843040 ], \ [ 0.659040718046439, 0.211632763260098, \ 0.362419048574935, 0.624122855455373 ], \ [ -0.199633529128396, 0.776708263894565, \ -0.537935161097828, 0.259800864702728 ], \ [ -0.675573350827063, 0.195381612446620, \ 0.660198809976478, 0.263750269148100 ] ] ) return a def bodewig_eigenvalues ( ): #*****************************************************************************80 # ## BODEWIG_EIGENVALUES returns the eigenvalues of the BODEWIG matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAMBDA(4,1), the eigenvalues. # import numpy as np lam = np.array ( [ \ [ -8.028578352396531 ], \ [ 7.932904717870018 ], \ [ 5.668864372830019 ], \ [ -1.573190738303506 ] ] ) return lam def bodewig_inverse ( ): #*****************************************************************************80 # ## BODEWIG_INVERSE returns the inverse of the BODEWIG matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ -139.0, 165.0, 79.0, 111.0 ], \ [ 165.0, -155.0, -57.0, -1.0 ], \ [ 79.0, -57.0, 45.0, -59.0 ], \ [ 111.0, -1.0, -59.0, -11.0 ] ] ) for j in range ( 0, 4 ): for i in range ( 0, 4 ): a[i,j] = a[i,j] / 568.0 return a def bodewig_plu ( ): #*****************************************************************************80 # ## BODEWIG_PLU returns the PLU factors of the BODEWIG matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real P(4,4), L(4,4), U(4,4), the factors. # import numpy as np # # Note that the matrix entries are listed by row. # p = np.array ( [ \ [ 0.0, 0.0, 0.0, 1.0 ], \ [ 0.0, 1.0, 0.0, 0.0 ], \ [ 0.0, 0.0, 1.0, 0.0 ], \ [ 1.0, 0.0, 0.0, 0.0 ] ] ) l = np.array ( [ \ [ 1.00, 0.00, 0.00, 0.00 ], \ [ 0.25, 1.00, 0.00, 0.00 ], \ [ 0.75, 0.647058823529412, 1.00, 0.00 ], \ [ 0.50, 0.352941176470588, 0.531531531531532, 1.00 ] ] ) u = np.array ( [ \ [ 4.00, 5.00, -2.00, -1.00 ], \ [ 0.00, -4.25, 1.50, 5.25 ], \ [ 0.00, 0.00, 6.529411764705882, -4.647058823529412 ], \ [ 0.00, 0.00, 0.00, 5.117117117117118 ] ] ) return p, l, u def bodewig_rhs ( ): #*****************************************************************************80 # ## BODEWIG_RHS returns the BODEWIG right hand side. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real B(4,1), the right hand side vector. # import numpy as np b = np.array ( [ [ 29.0 ], [ 18.0 ], [ 15.0 ], [ 4.0 ] ] ) return b def bodewig_solution ( ): #*****************************************************************************80 # ## BODEWIG_SOLUTION returns the BODEWIG_SOLUTION # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(4,1), the solution. # import numpy as np x = np.array ( [ [ 1.0], [ 2.0 ], [ 3.0 ], [ 4.0 ] ] ) return x def bodewig_test ( ): #*****************************************************************************80 # ## BODEWIG_TEST tests BODEWIG. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'BODEWIG_TEST' print ' BODEWIG computes the BODEWIG matrix.' n = 4 a = bodewig ( ) r8mat_print ( n, n, a, ' BODEWIG matrix:' ) print '' print 'BODEWIG_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bodewig_test ( ) timestamp ( )