#! /usr/bin/env python # def boothroyd ( n ): #*****************************************************************************80 # ## BOOTHROYD returns the BOOTHROYD matrix. # # Formula: # # A(I,J) = C(N+I-1,I-1) * C(N-1,N-J) * N / ( I + J - 1 ) # # Example: # # N = 5 # # 5 10 10 5 1 # 15 40 45 24 5 # 35 105 126 70 15 # 70 224 280 160 35 # 126 420 540 315 70 # # Properties: # # A is not symmetric. # # A is positive definite. # # det ( A ) = 1. # # The inverse matrix has the same entries, but with alternating sign. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 September 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_choose import r8_choose a = np.zeros ( [ n, n ] ) for j in range ( 0, n ): for i in range ( 0, n ): a[i,j] = r8_choose ( n + i, i ) * r8_choose ( n - 1, n - j - 1 ) * n \ / ( i + j + 1 ); return a def boothroyd_condition ( n ): #*****************************************************************************80 # ## BOOTHROYD_CONDITION computes the L1 condition of the BOOTHROYD matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # from r8_choose import r8_choose a_norm = 0.0 for j in range ( 0, n ): s = 0.0 for i in range ( 0, n ): s = s + r8_choose ( n + i, i ) * r8_choose ( n - 1, n - j - 1 ) * n \ / ( i + j + 1 ); a_norm = max ( a_norm, s ) b_norm = a_norm value = a_norm * b_norm return value def boothroyd_determinant ( n ): #*****************************************************************************80 # ## BOOTHROYD_DETERMINANT computes the determinant of the BOOTHROYD matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def boothroyd_determinant_test ( ): #*****************************************************************************80 # ## BOOTHROYD_DETERMINANT_TEST tests BOOTHROYD_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # from boothroyd import boothroyd from r8mat_print import r8mat_print print '' print 'BOOTHROYD_DETERMINANT_TEST' print ' BOOTHROYD_DETERMINANT computes the BOOTHROYD determinant.' m = 4 n = 4 a = boothroyd ( n ) r8mat_print ( m, n, a, ' BOOTHROYD matrix:' ) value = boothroyd_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'BOOTHROYD_DETERMINANT_TEST' print ' Normal end of execution.' return def boothroyd_inverse ( n ): #*****************************************************************************80 # ## BOOTHROYD_INVERSE returns the inverse of the BOOTHROYD matrix. # # Example: # # N = 5 # # 5 -10 10 -5 1 # -15 40 -45 24 -5 # 35 -105 126 -70 15 # -70 224 -280 160 -35 # 126 -420 540 -315 70 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_choose import r8_choose from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = r8_mop ( i + j ) * r8_choose ( n + i, i ) \ * r8_choose ( n-1, n-j-1 ) * float ( n ) / float ( i + j + 1 ) return a def boothroyd_test ( ): #*****************************************************************************80 # ## BOOTHROYD_TEST tests BOOTHROYD. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'BOOTHROYD_TEST' print ' BOOTHROYD computes the BOOTHROYD matrix.' m = 5 n = m a = boothroyd ( n ) r8mat_print ( m, n, a, ' BOOTHROYD matrix:' ) print '' print 'BOOTHROYD_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) boothroyd_test ( ) timestamp ( )