#! /usr/bin/env python # def borderband ( n ): #*****************************************************************************80 # ## BORDERBAND returns the BORDERBAND matrix. # # Formula: # # If ( I = J ) # A(I,I) = 1 # else if ( I = N ) # A(N,J) = 2^(1-J) # else if ( J = N ) # A(I,N) = 2^(1-I) # else # A(I,J) = 0 # # Example: # # N = 5 # # 1 0 0 0 1 # 0 1 0 0 1/2 # 0 0 1 0 1/4 # 0 0 0 1 1/8 # 1 1/2 1/4 1/8 1 # # Properties: # # A is symmetric: A' = A. # # A is border-banded. # # A has N-2 eigenvalues of 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 elif ( j == n - 1 ): a[i,j] = 1.0 / ( 2 ** i ) elif ( i == n - 1 ): a[i,j] = 1.0 / ( 2 ** j ) else: a[i,j] = 0.0 return a def borderband_determinant ( n ): #*****************************************************************************80 # ## BORDERBAND_DETERMINANT computes the determinant of the BORDERBAND matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 0.0 for i in range ( 1, n ): determ = determ - 2 ** ( 2 - 2 * i ) determ = determ + 1 return determ def borderband_determinant_test ( ): #*****************************************************************************80 # ## BORDERBAND_DETERMINANT_TEST tests BORDERBAND_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'BORDERBAND_DETERMINANT_TEST' print ' BORDERBAND_DETERMINANT computes the BORDERBAND determinant.' m = 5 n = m a = borderband ( n ) r8mat_print ( m, n, a, ' BORDERBAND matrix:' ) value = borderband_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'BORDERBAND_DETERMINANT_TEST' print ' Normal end of execution.' return def borderband_inverse ( n ): #*****************************************************************************80 # ## BORDERBAND_INVERSE returns the inverse of the BORDERBAND matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the inverse matrix. # import numpy as np from r8mat_mm import r8mat_mm from tri_l1_inverse import tri_l1_inverse from tri_u_inverse import tri_u_inverse p, l, u = borderband_plu ( n ) p_inverse = np.transpose ( p ) l_inverse = tri_l1_inverse ( n, l ) u_inverse = tri_u_inverse ( n, u ) lipi = r8mat_mm ( n, n, n, l_inverse, p_inverse ) a = r8mat_mm ( n, n, n, u_inverse, lipi ) return a def borderband_plu ( n ): #*****************************************************************************80 # ## BORDERBAND_PLU returns the PLU factors of the BORDERBAND matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 June 2011 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np p = np.zeros ( ( n, n ) ) for i in range ( 0, n ): p[i,i] = 1.0 l = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == j ): l[i,j] = 1.0 elif ( i == n - 1 ): l[i,j] = 1.0 / 2.0 ** j u = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == n - 1 and j == n - 1 ): u[i,j] = 0.0 for k in range ( 2, n ): u[i,j] = u[i,j] - 2.0 ** ( 2 - 2 * k ) elif ( i == j ): u[i,j] = 1.0 elif ( j == n - 1 ): u[i,j] = 1.0 / 2.0 ** i return p, l, u def borderband_test ( ): #*****************************************************************************80 # ## BORDERBAND_TEST tests BORDERBAND. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'BORDERBAND_TEST' print ' BORDERBAND computes the BORDERBAND matrix.' m = 5 n = m a = borderband ( n ) r8mat_print ( m, n, a, ' BORDERBAND matrix:' ) print '' print 'BORDERBAND_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) borderband_test ( ) timestamp ( )