#!/usr/bin/env python def c8_normal_01 ( seed ): #*****************************************************************************80 # ## C8_NORMAL_01 returns a unit normally distributed complex number. # # Discussion: # # The value has mean 0 and standard deviation 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer SEED, a seed for the random number generator. # # Output, complex C, a sample of the PDF. # # Output, integer SEED, a seed for the random number generator. # import numpy as np from r8_uniform_01 import r8_uniform_01 v1, seed = r8_uniform_01 ( seed ) v2, seed = r8_uniform_01 ( seed ) x = np.sqrt ( - 2.0 * np.log ( v1 ) ) * np.cos ( 2.0 * np.pi * v2 ) y = np.sqrt ( - 2.0 * np.log ( v1 ) ) * np.sin ( 2.0 * np.pi * v2 ) c = x + y * 1j return c, seed def c8_normal_01_test ( ): #*****************************************************************************80 # ## C8_NORMAL_01_TEST tests C8_NORMAL_01. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2015 # # Author: # # John Burkardt # seed = 123456789 print '' print 'C8_NORMAL_01_TEST' print ' C8_NORMAL_01 computes pseudonormal complex values.' print ''; print ' The initial seed is %d' % ( seed ) print '' for i in range ( 1, 11 ): [ c, seed ] = c8_normal_01 ( seed ) print ' %6d ( %f, %f )' % ( i, c.real, c.imag ) print '' print 'C8_NORMAL_01_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) c8_normal_01_test ( ) timestamp ( )