#!/usr/bin/env python def c8vec_unity ( n ): #*****************************************************************************80 # ## C8VEC_UNITY returns the N roots of unity. # # Discussion: # # X(1:N) = exp ( 2 * PI * (0:N-1) / N ) # # X(1:N)^N = ( (1,0), (1,0), ..., (1,0) ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of elements. # # Output, complex A(N), the array. # import numpy as np a = np.zeros ( n, 'complex' ) for i in range ( 0, n ): t = 2.0 * np.pi * float ( i ) / float ( n ) a[i] = np.cos ( t ) + 1j * np.sin ( t ) return a def c8vec_unity_test ( ): #*****************************************************************************80 # ## C8VEC_UNITY_TEST tests C8VEC_UNITY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # from c8vec_print import c8vec_print print '' print 'C8VEC_UNITY_TEST' print ' C8VEC_UNITY returns the N roots of unity.' n = 12 x = c8vec_unity ( n ) c8vec_print ( n, x, ' The N roots of unity:' ) print '' print 'C8VEC_UNITY_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) c8vec_unity_test ( ) timestamp ( )