#! /usr/bin/env python # def cheby_diff1 ( n ): #*****************************************************************************80 # ## CHEBY_DIFF1 returns the CHEBY_DIFF1 matrix. # # Discussion: # # CHEBY_DIFF1 is the Chebyshev Differentiation matrix. # # Example: # # N = 6 # # 8.5000 -10.4721 2.8944 -1.5279 1.1056 -0.5000 # 2.6180 -1.1708 -2.0000 0.8944 -0.6810 0.2764 # -0.7236 2.0000 -0.1708 1.6180 0.8944 -0.3820 # 0.3820 -0.8944 1.6180 0.1708 -2.0000 0.7236 # -0.2764 0.6180 -0.8944 2.0000 1.1708 -2.6180 # 0.5000 -1.1056 1.5279 -2.8944 10.4721 -8.5000 # # Properties: # # A is antisymmetric. # # If N is odd, then det ( A ) = 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 December 2014 # # Author: # # John Burkardt # # Reference: # # Lloyd Trefethen, # Spectral Methods in MATLAB, # SIAM, 2000, page 54. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np r8_pi = 3.141592653589793 a = np.zeros ( [ n, n ] ) if ( n == 1 ): a[0,0] = 1.0 return a c = np.zeros ( n ); c[0] = 2.0; for i in range ( 1, n - 1 ): c[i] = 1.0 c[n-1] = 2.0 # # Get the Chebyshev points. # x = np.zeros ( n + 1 ) for i in range ( 0, n + 1 ): x[i] = np.cos ( r8_pi * float ( i ) / float ( n - 1 ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i != j ): a[i,j] = ( -1.0 ) ** ( i + j ) * c[i] / ( c[j] * ( x[i] - x[j] ) ) elif ( i == 0 ): a[i,i] = ( 2 * ( n - 1 ) ** 2 + 1 ) / 6.0 elif ( i == n - 1 ): a[i,i] = - ( 2 * ( n - 1 ) ** 2 + 1 ) / 6.0 else: a[i,i] = - 0.5 * x[i] / ( 1.0 - x[i] ** 2 ) return a def cheby_diff1_determinant ( n ): #*****************************************************************************80 # ## CHEBY_DIFF1_DETERMINANT computes the determinant of the CHEBY_DIFF1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 0.0 return determ def cheby_diff1_determinant_test ( ): #*****************************************************************************80 # ## CHEBY_DIFF1_DETERMINANT_TEST tests CHEBY_DIFF1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 December 2014 # # Author: # # John Burkardt # from cheby_diff1 import cheby_diff1 from r8mat_print import r8mat_print print '' print 'CHEBY_DIFF1_DETERMINANT_TEST' print ' CHEBY_DIFF1_DETERMINANT computes the CHEBY_DIFF1 determinant.' m = 5 n = 5 a = cheby_diff1 ( n ) r8mat_print ( n, n, a, ' CHEBY_DIFF1 matrix:' ) value = cheby_diff1_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'CHEBY_DIFF1_DETERMINANT_TEST' print ' Normal end of execution.' def cheby_diff1_null_left ( m, n ): #*****************************************************************************80 # ## CHEBY_DIFF1_NULL_LEFT returns a left null vector for the CHEBY_DIFF1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(M), the vector. # import numpy as np if ( ( m % 2 ) == 1 ): x = np.zeros ( m ) x[0] = 1.0 t = -2.0 for i in range ( 1, m - 1 ): x[i] = t t = -t x[m-1] = 1.0 else: x = np.zeros ( m ) return x def cheby_diff1_null_right ( m, n ): #*****************************************************************************80 # ## CHEBY_DIFF1_NULL_RIGHT returns a right null vector for the CHEBY_DIFF1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), the vector. # import numpy as np if ( n % 2 == 1 ): x = np.ones ( n ) else: x = np.zeros ( n ) return x def cheby_diff1_test ( ): #*****************************************************************************80 # ## CHEBY_DIFF1_TEST tests CHEBY_DIFF1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CHEBY_DIFF1_TEST' print ' CHEBY_DIFF1 computes the CHEBY_DIFF1 matrix.' m = 5 n = 5 a = cheby_diff1 ( n ) r8mat_print ( m, n, a, ' CHEBY_DIFF1 matrix:' ) print '' print 'CHEBY_DIFF1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_diff1_test ( ) cheby_diff1_determinant_test ( ) timestamp ( )