#! /usr/bin/env python # def cheby_t ( n ): #*****************************************************************************80 # ## CHEBY_T returns the CHEBY_T matrix. # # Example: # # N = 11 # # 1 . . . . . . . . . . # . 1 . . . . . . . . . # -1 . 2 . . . . . . . . # . -3 . 4 . . . . . . . # 1 . -8 . 8 . . . . . . # . 5 . -20 . 16 . . . . . # -1 . 18 . -48 . 32 . . . . # . -7 . 56 . -112 . 64 . . . # 1 . -32 . 160 . -256 . 128 . . # . 9 . -120 . 432 . -576 . 256 . # -1 . 50 . -400 . 1120 . -1280 . 512 # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral: int ( A ) = A. # # A is reducible. # # A is lower triangular. # # Each row of A sums to 1. # # det ( A ) = 2^( (N-1) * (N-2) / 2 ) # # A is not normal: A' * A /= A * A'. # # For I = 1: # LAMBDA(1) = 1 # For 1 < I # LAMBDA(I) = 2^(I-2) # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) a[0,0] = 1.0 if ( n == 1 ): return a a[1,1] = 1.0 if ( n == 2 ): return for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = - a[i-2,j] else: a[i,j] = 2.0 * a[i-1,j-1] - a[i-2,j] return a def cheby_t_determinant ( n ): #*****************************************************************************80 # ## CHEBY_T_DETERMINANT computes the determinant of the CHEBY_T matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # power = ( ( n - 1 ) * ( n - 2 ) ) // 2 determ = 2 ** power return determ def cheby_t_determinant_test ( ): #*****************************************************************************80 # ## CHEBY_T_DETERMINANT_TEST tests CHEBY_T_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CHEBY_T_DETERMINANT_TEST' print ' CHEBY_T_DETERMINANT computes the CHEBY_T determinant.' m = 5 n = m a = cheby_t ( n ) r8mat_print ( m, n, a, ' CHEBY_T matrix:' ) value = cheby_t_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'CHEBY_T_DETERMINANT_TEST' print ' Normal end of execution.' return def cheby_t_inverse ( n ): #*****************************************************************************80 # ## CHEBY_T_INVERSE returns the inverse of the CHEBY_T matrix. # # Example: # # N = 11 # # 1 . . . . . . . . . . # . 1 . . . . . . . . . # 1 . 1 . . . . . . . . / 2 # . 3 . 1 . . . . . . . / 4 # 3 . 4 . 1 . . . . . . / 8 # . 10 . 5 . 1 . . . . . / 16 # 10 . 15 . 6 . 1 . . . . / 32 # . 35 . 21 . 7 . 1 . . . / 64 # 35 . 56 . 28 . 8 . 1 . . / 128 # . 126 . 84 . 36 . 9 . 1 . / 256 # 126 . 210 . 120 . 45 . 10 . 1 / 512 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,1] = 1.0 if ( 2 < n ): for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = a[i-1,j+1] / 2.0 elif ( j == 1 ): a[i,j] = ( 2.0 * a[i-1,j-1] + a[i-1,j+1] ) / 2.0 elif ( j < n - 1 ): a[i,j] = ( a[i-1,j-1] + a[i-1,j+1] ) / 2.0 else: a[i,j] = a[i-1,j-1] / 2.0 return a def cheby_t_test ( ): #*****************************************************************************80 # ## CHEBY_T_TEST tests CHEBY_T. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CHEBY_T_TEST' print ' CHEBY_T computes the CHEBY_T matrix.' m = 5 n = m a = cheby_t ( n ) r8mat_print ( m, n, a, ' CHEBY_T matrix:' ) print '' print 'CHEBY_T_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_t_test ( ) timestamp ( )