#! /usr/bin/env python # def cheby_u_polynomial ( n, x ): #*****************************************************************************80 # ## CHEBY_U_POLYNOMIAL evaluates the Chebyshev polynomials of the second kind. # # Differential equation: # # (1-X*X) Y'' - 3 X Y' + N (N+2) Y = 0 # # First terms: # # U(0)(X) = 1 # U(1)(X) = 2 X # U(2)(X) = 4 X^2 - 1 # U(3)(X) = 8 X^3 - 4 X # U(4)(X) = 16 X^4 - 12 X^2 + 1 # U(5)(X) = 32 X^5 - 32 X^3 + 6 X # U(6)(X) = 64 X^6 - 80 X^4 + 24 X^2 - 1 # U(7)(X) = 128 X^7 - 192 X^5 + 80 X^3 - 8X # # Recursion: # # U(0)(X) = 1, # U(1)(X) = 2 * X, # U(N)(X) = 2 * X * U(N-1)(X) - U(N-2)(X) # # Norm: # # Integral ( -1 <= X <= 1 ) ( 1 - X^2 ) * U(N)(X)^2 dX = PI/2 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the highest polynomial to compute. # # Input, real X, the point at which the polynomials are to be computed. # # Output, real CX(1:N+1), the values of the N+1 Chebyshev polynomials. # import numpy as np cx = np.zeros ( n + 1 ) cx[0] = 1.0 if ( n < 1 ): return cx cx[1] = 2.0 * x for i in range ( 2, n + 1 ): cx[i] = 2.0 * x * cx[i-1] - cx[i-2] return cx def cheby_u_polynomial_test ( ): #*****************************************************************************80 # ## CHEBY_U_POLYNOMIAL_TEST tests CHEBY_U_POLYNOMIAL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 December 2014 # # Author: # # John Burkardt # from r8vec_print import r8vec_print print '' print 'CHEBY_U_POLYNOMIAL_TEST' print ' CHEBY_U_POLYNOMIAL evaluates Chebyshev U polynomials at X.' n = 10 x = 0.25 c = cheby_u_polynomial ( n, x ) r8vec_print ( n + 1, c, ' Chebyshev U polynomials:' ) print '' print 'CHEBY_U_POLYNOMIAL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_u_polynomial_test ( ) timestamp ( )