#! /usr/bin/env python # def cheby_van1 ( m, a, b, n, x ): #*****************************************************************************80 # ## CHEBY_VAN1 returns the Chebyshev Vandermonde-like matrix for [A,B]. # # Discussion: # # Normally, the Chebyshev polynomials are defined on -1 <= XI <= +1. # Here, we assume the Chebyshev polynomials have been defined on the # interval A <= X <= B, using the mapping # XI = ( - ( B - X ) + ( X - A ) ) / ( B - A ) # so that # ChebyAB(A,B;X) = Cheby(XI). # # if ( I == 1 ) then # V(1,1:N) = 1; # elseif ( I == 2 ) then # V(2,1:N) = XI(1:N); # else # V(I,1:N) = 2.0 * XI(1:N) * V(I-1,1:N) - V(I-2,1:N); # # Example: # # M = 5, A = -1, B = +1, N = 5, X = ( 1, 2, 3, 4, 5 ) # # 1 1 1 1 1 # 1 2 3 4 5 # 1 7 17 31 49 # 1 26 99 244 485 # 1 97 577 1921 4801 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Reference: # # Nicholas Higham, # Stability analysis of algorithms for solving confluent # Vandermonde-like systems, # SIAM Journal on Matrix Analysis and Applications, # Volume 11, 1990, pages 23-41. # # Parameters: # # Input, integer M, the number of rows of the matrix. # # Input, real A, B, the interval. # # Input, integer N, the number of values in X, and the number # of columns in the matrix. # # Input, real X(N), the abscissas. # # Output, real V(M,N), the matrix. # import numpy as np # # Compute the normalized abscissas in [-1,+1]. # xi = np.zeros ( n ) for i in range ( 0, n ): xi[i] = ( - 1.0 * ( b - x[i] ) \ + 1.0 * ( x[i] - a ) ) \ / ( b - a ) # # Compute the matrix. # v = np.zeros ( [ m, n ] ); for j in range ( 0, n ): v[0,j] = 1.0 v[1,j] = xi[j] for i in range ( 2, m ): v[i,j] = 2.0 * xi[j] * v[i-1,j] - v[i-2,j] return v def cheby_van1_test ( ): #*****************************************************************************80 # ## CHEBY_VAN1_TEST tests CHEBY_VAN1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print print '' print 'CHEBY_VAN1_TEST' print ' CHEBY_VAN1 computes the CHEBY_VAN1 matrix.' m = 5 x_lo = -5.0 x_hi = +5.0 x = np.linspace ( x_lo, x_hi, m ) n = m a = cheby_van1 ( m, x_lo, x_hi, n, x ) r8mat_print ( m, n, a, ' CHEBY_VAN1 matrix:' ) print '' print 'CHEBY_VAN1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_van1_test ( ) timestamp ( )