#! /usr/bin/env python # def cheby_van2 ( n ): #*****************************************************************************80 # ## CHEBY_VAN2 returns the CHEBY_VAN2 matrix. # # Discussion: # # CHEBY_VAN2 is the Chebyshev Vandermonde-like matrix. # # Discussion: # # The formula for this matrix has been slightly modified, by a scaling # factor, in order to make it closer to its inverse. # # Formula: # # A(I,J) = ( 1 / sqrt ( N - 1 ) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) # # Example: # # N = 4 # # 1 1 1 1 # 1/sqrt(3) * 1 COS(PI/3) COS(2*PI/3) COS(3*PI/3) # 1 COS(2*PI/3) COS(4*PI/3) COS(6*PI/3) # 1 COS(3*PI/3) COS(6*PI/3) COS(9*PI/3) # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The entries of A are based on the extrema of the Chebyshev # polynomial T(n-1). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # from math import cos from math import sqrt import numpy as np r8_pi = 3.141592653589793 a = np.zeros ( ( n, n ) ) if ( n == 1 ): a[0,0] = 1.0 return a t = sqrt ( n - 1 ) for i in range ( 0, n ): for j in range ( 0, n ): angle = ( i * j ) * r8_pi / ( n - 1 ) a[i,j] = cos ( angle ) / t return a def cheby_van2_determinant ( n ): #*****************************************************************************80 # ## CHEBY_VAN2_DETERMINANT computes the determinant of the CHEBY_VAN2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # from r8_mop import r8_mop from math import floor from math import sqrt if ( n <= 0 ): determ = 0.0 elif ( n == 1 ): determ = 1.0 else: determ = r8_mop ( floor ( n / 2 ) ) * sqrt ( 2.0 ) ** ( 4 - n ) return determ def cheby_van2_determinant_test ( ): #*****************************************************************************80 # ## CHEBY_VAN2_DETERMINANT_TEST tests CHEBY_VAN2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # from cheby_van2 import cheby_van2 from r8mat_print import r8mat_print print '' print 'CHEBY_VAN2_DETERMINANT_TEST' print ' CHEBY_VAN2_DETERMINANT computes the CHEBY_VAN2 determinant.' m = 5 n = 5 a = cheby_van2 ( n ) r8mat_print ( n, n, a, ' CHEBY_VAN2 matrix:' ) value = cheby_van2_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'CHEBY_VAN2_DETERMINANT_TEST' print ' Normal end of execution.' return def cheby_van2_inverse ( n ): #*****************************************************************************80 # #% CHEBY_VAN2_INVERSE inverts the CHEBY_VAN2 matrix. # # Discussion: # # CHEBY_VAN2 is the Chebyshev Vandermonde-like matrix. # # Formula: # # if ( I == 1 or N ) .and. ( J == 1 or N ) then # A(I,J) = ( 1 / (2*sqrt(N-1)) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) # else if ( I == 1 or N ) .or. ( J == 1 or N ) then # A(I,J) = ( 1 / ( sqrt(N-1)) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) # else # A(I,J) = ( 2 / sqrt(N-1) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) # # # Example: # # N = 4 # # 1/2 1 1 1/2 # 1/sqrt(3) * 1 2*COS(PI/3) 2*COS(2*PI/3) COS(3*PI/3) # 1 2*COS(2*PI/3) 2*COS(4*PI/3) COS(6*PI/3) # 1/2 COS(3*PI/3) COS(6*PI/3) 1/2 * COS(9*PI/3) # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The entries of A are based on the extrema of the Chebyshev # polynomial T(n-1). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( i * j ) * np.pi / float ( n - 1 ) a[i,j] = np.cos ( angle ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = 2.0 * a[i,j] / np.sqrt ( float ( n - 1 ) ) for j in range ( 0, n ): a[0,j] = 0.5 * a[0,j] a[n-1,j] = 0.5 * a[n-1,j] for i in range ( 0, n ): a[i,0] = 0.5 * a[i,0] a[i,n-1] = 0.5 * a[i,n-1] return a def cheby_van2_test ( ): #*****************************************************************************80 # ## CHEBY_VAN2_TEST tests CHEBY_VAN2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CHEBY_VAN2_TEST' print ' CHEBY_VAN2 computes the CHEBY_VAN2 matrix.' m = 5 n = 5 a = cheby_van2 ( n ) r8mat_print ( m, n, a, ' CHEBY_VAN2 matrix:' ) print '' print 'CHEBY_VAN2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_van2_test ( ) timestamp ( )