#! /usr/bin/env python # def cheby_van3 ( n ): #*****************************************************************************80 # ## CHEBY_VAN3 returns the CHEBY_VAN3 matrix. # # Discussion: # # CHEBY_VAN3 is the Chebyshev Vandermonde-like matrix. # # Formula: # # A(I,J) = cos ( (I-1) * (J-1/2) * PI / N ) # # Example: # # N = 4 # # 1 1 1 1 # COS( PI/8) COS(3*PI/8) COS( 5*PI/8) COS( 7*PI/8) # COS(2*PI/8) COS(6*PI/8) COS(10*PI/8) COS(14*PI/8) # COS(3*PI/8) COS(9*PI/8) COS(15*PI/8) COS(21*PI/8) # # Properties: # # A is generally not symmetric: A' /= A. # # A is "almost" orthogonal. A * A' = a diagonal matrix. # # The entries of A are based on the zeros of the Chebyshev polynomial T(n). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # from math import cos import numpy as np r8_pi = 3.141592653589793 a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = i * ( 2 * j + 1 ) * r8_pi / ( 2 * n ) a[i,j] = cos ( angle ) return a def cheby_van3_determinant ( n ): #*****************************************************************************80 # ## CHEBY_VAN3_DETERMINANT computes the determinant of the CHEBY_VAN3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # from r8_mop import r8_mop from math import sqrt determ = r8_mop ( n + 1 ) * sqrt ( float ( n ) ** n ) / sqrt ( 2.0 ** ( n - 1 ) ) return determ def cheby_van3_determinant_test ( ): #*****************************************************************************80 # ## CHEBY_VAN3_DETERMINANT_TEST tests CHEBY_VAN3_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 January 2015 # # Author: # # John Burkardt # from cheby_van3 import cheby_van3 from r8mat_print import r8mat_print print '' print 'CHEBY_VAN3_DETERMINANT_TEST' print ' CHEBY_VAN3_DETERMINANT computes the CHEBY_VAN3 determinant.' m = 5 n = m a = cheby_van3 ( n ) r8mat_print ( n, n, a, ' CHEBY_VAN3 matrix:' ) value = cheby_van3_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'CHEBY_VAN3_DETERMINANT_TEST' print ' Normal end of execution.' return def cheby_van3_inverse ( n ): #*****************************************************************************80 # ## CHEBY_VAN3_INVERSE inverts the CHEBY_VAN3 matrix. # # Discussion: # # CHEBY_VAN3 is the Chebyshev Vandermonde-like matrix. # # Formula: # # if J == 1 then # A(I,J) = (1/N) * cos ( (I-1/2) * (J-1) * PI / N ) # else if 1 < J then # A(I,J) = (2/N) * cos ( (I-1/2) * (J-1) * PI / N ) # # Example: # # N = 4 # # 1/4 1/2 cos( PI/8) 1/2 cos( 2*PI/8) 1/2 cos( 3*PI/8) # 1/4 1/2 cos(3*PI/8) 1/2 cos( 6*PI/8) 1/2 cos( 9*PI/8) # 1/4 1/2 cos(5*PI/8) 1/2 cos(10*PI/8) 1/2 cos(15*PI/8) # 1/4 1/2 cos(7*PI/8) 1/2 cos(14*PI/8) 1/2 cos(21*PI/8) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( ( 2 * i + 1 ) * j ) * np.pi / float ( 2 * n ) a[i,j] = np.cos ( angle ) / float ( n ) for i in range ( 0, n ): for j in range ( 1, n ): a[i,j] = 2.0 * a[i,j] return a def cheby_van3_test ( ): #*****************************************************************************80 # ## CHEBY_VAN3_TEST tests CHEBY_VAN3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CHEBY_VAN3_TEST' print ' CHEBY_VAN3 computes the CHEBY_VAN3 matrix.' m = 5 n = m a = cheby_van3 ( n ) r8mat_print ( m, n, a, ' CHEBY_VAN3 matrix:' ) print '' print 'CHEBY_VAN3_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_van3_test ( ) timestamp ( )