#! /usr/bin/env python # def chow ( alpha, beta, m, n ): #*****************************************************************************80 # ## CHOW returns the CHOW matrix. # # Discussion: # # By making ALPHA small compared with BETA, the eigenvalues can # all be made very close to BETA, and this is useful as a test # of eigenvalue computing routines. # # Formula: # # if ( I = J ) # A(I,J) = ALPHA + BETA # else if ( J <= I+1 ) then # A(I,J) = ALPHA^(I+1-J) # else # A(I,J) = 0 # # Example: # # ALPHA = 2, BETA = 3, M = 5, N = 5 # # 5 1 0 0 0 # 4 5 1 0 0 # 8 4 5 1 0 # 16 8 4 5 1 # 32 16 8 4 5 # # ALPHA = ALPHA, BETA = BETA, M = 5, N = 5 # # ALPHA+BETA 1 0 0 0 # ALPHA^2 ALPHA+BETA 1 0 0 # ALPHA^3 ALPHA^2 ALPHA+BETA 1 0 # ALPHA^4 ALPHA^3 ALPHA^2 ALPHA+BETA 1 # ALPHA^5 ALPHA^4 ALPHA^3 ALPHA^2 ALPHA+BETA # # Rectangular Properties: # # A is Toeplitz: constant along diagonals. # # A is lower Hessenberg. # # Square Properties: # # A is generally not symmetric: A' /= A. # # If ALPHA is 0.0, then A is singular if and only if BETA is 0.0. # # If BETA is 0.0, then A will be singular if 1 < N. # # If BETA is 0.0 and N = 1, then A will be singular if ALPHA is 0.0. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # For 1 <= I < N-(N+1)/2, # # LAMBDA(I) = BETA + 4 * ALPHA * cos ( i * pi / ( N+2 ) )^2, # # For N-(N+1)/2+1 <= I <= N # # LAMBDA(I) = BETA # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 December 2014 # # Author: # # John Burkardt # # Reference: # # TS Chow, # A class of Hessenberg matrices with known eigenvalues and inverses, # SIAM Review, # Volume 11, Number 3, 1969, pages 391-395. # # Graeme Fairweather, # On the eigenvalues and eigenvectors of a class of Hessenberg matrices, # SIAM Review, # Volume 13, Number 2, 1971, pages 220-221. # # Parameters: # # Input, real ALPHA, the ALPHA value. A typical value is 1.0. # # Input, real BETA, the BETA value. A typical value is 0.0. # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == j - 1 ): a[i,j] = 1.0 elif ( i == j ): a[i,j] = alpha + beta elif ( j + 1 <= i ): a[i,j] = alpha ** ( i + 1 - j ) else: a[i,j] = 0.0; return a def chow_determinant ( alpha, beta, n ): #*****************************************************************************80 # ## CHOW_DETERMINANT computes the determinant of the CHOW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the ALPHA value. A typical value is 1.0. # # Input, real BETA, the BETA value. A typical value is 0.0. # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # from math import cos r8_pi = 3.141592653589793 determ = 1.0 k = n - ( n // 2 ) for i in range ( 1, k + 1 ): angle = i * r8_pi / ( n + 2 ) determ = determ * ( beta + 4.0 * alpha * ( cos ( angle ) ) ** 2 ) determ = determ * beta ** ( n - k ) return determ def chow_determinant_test ( ): #*****************************************************************************80 # ## CHOW_DETERMINANT_TEST tests CHOW_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 December 2014 # # Author: # # John Burkardt # from chow import chow from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'CHOW_DETERMINANT_TEST' print ' CHOW_DETERMINANT computes the CHOW determinant.' m = 5 n = 5 seed = 123456789 alpha, seed = r8_uniform_01 ( seed ) alpha = round ( 50.0 * alpha ) / 5.0 beta, seed = r8_uniform_01 ( seed ) beta = round ( 50.0 * beta ) / 5.0 a = chow ( alpha, beta, m, n ) r8mat_print ( m, n, a, ' CHOW matrix:' ) value = chow_determinant ( alpha, beta, n ) print ' Value = %g' % ( value ) print '' print 'CHOW_DETERMINANT_TEST' print ' Normal end of execution.' return def chow_eigen_left ( alpha, beta, n ): #*****************************************************************************80 # ## CHOW_EIGEN_LEFT returns the left eigenvector matrix for the CHOW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the ALPHA value. A typical value is 1.0. # # Input, real BETA, the BETA value. A typical value is 0.0. # # Input, integer N, the order of the matrix. # # Output, real V(N,N), the left eigenvector matrix. # import numpy as np v = np.zeros ( ( n, n ) ) k = n - ( ( n + 1 ) // 2 ) for i in range ( 0, k ): angle = float ( i + 1 ) * np.pi / float ( n + 2 ) for j in range ( 0, n ): v[i,j] = alpha ** ( n - j - 1 ) * 2.0 ** ( n - j - 2 ) \ * ( np.cos ( angle ) ) ** ( n - j ) \ * np.sin ( ( n - j + 1 ) * angle ) / np.sin ( angle ) for i in range ( k, n ): v[i,n-2] = -alpha v[i,n-1] = 1.0 return v def chow_eigen_right ( alpha, beta, n ): #*****************************************************************************80 # ## CHOW_EIGEN_RIGHT returns the right eigenvectors of the CHOW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the ALPHA value. A typical value is 1.0. # # Input, real BETA, the BETA value. A typical value is 0.0. # # Input, integer N, the order of the matrix. # # Output, real U(N,N), the right eigenvector matrix. # import numpy as np u = np.zeros ( ( n, n ) ) k = n - ( ( n + 1 ) // 2 ) for j in range ( 0, k ): angle = float ( j + 1 ) * np.pi / float ( n + 2 ) for i in range ( 0, n ): u[i,j] = alpha ** ( i ) * 2.0 ** ( i - 1 ) \ * ( np.cos ( angle ) ) ** ( i - 1 ) \ * np.sin ( float ( i + 2 ) * angle ) / np.sin ( angle ) for j in range ( k, n ): u[0,j] = 1.0 u[1,j] = -alpha return u def chow_eigenvalues ( alpha, beta, n ): #*****************************************************************************80 # ## CHOW_EIGENVALUES returns the eigenvalues of the CHOW matrix. # # Example: # # ALPHA = 2, BETA = 3, N = 5 # # 9.49395943 # 6.10991621 # 3.0 # 3.0 # 3.0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the ALPHA value. A typical value is 1.0. # # Input, real BETA, the BETA value. A typical value is 0.0. # # Input, integer N, the order of A. # # Output, real LAM(N), the eigenvalues of A. # import numpy as np lam = np.zeros ( n ); k = n - ( ( n + 1 ) // 2 ) for i in range ( 0, k ): angle = float ( i + 1 ) * np.pi / float ( n + 2 ) lam[i] = beta + 4.0 * alpha * ( np.cos ( angle ) ) ** 2 for i in range ( k, n ): lam[i] = beta return lam def chow_inverse ( alpha, beta, n ): #*****************************************************************************80 # #%\# CHOW_INVERSE returns the inverse of the Chow matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the ALPHA value. A typical value is 1.0. # # Input, real BETA, the BETA value. A typical value is 0.0. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_mop import r8_mop from sys import exit a = np.zeros ( ( n, n ) ) if ( 0.0 == alpha and beta == 0.0 ): print '' print 'CHOW_INVERSE - Fatal error!' print ' The Chow matrix is not invertible, because' print ' ALPHA = 0 and BETA = 0.' exit ( 'CHOW_INVERSE - Fatal error!' ) elif ( 0.0 == alpha and beta != 0.0 ): for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = r8_mop ( j - i ) / beta ** ( j + 1 - i ) elif ( 0.0 != alpha and beta == 0.0 ): if ( 1 < n ): print '' print 'CHOW_INVERSE - Fatal error!' print ' The Chow matrix is not invertible, because' print ' BETA = 0 and 1 < N.' exit ( 'CHOW_INVERSE - Fatal error!' ) a[0.0] = 1.0 / alpha else: d = np.zeros ( n + 1 ) d[0] = 1.0 d[1] = beta for i in range ( 2, n + 1 ): d[i] = beta * d[i-1] + alpha * beta * d[i-2] dp = np.zeros ( n + 2 ) dp[0] = 1.0 / beta dp[1] = 1.0 dp[2] = alpha + beta for i in range ( 2, n + 1 ): dp[i+1] = d[i] + alpha * d[i-1] for i in range ( 0, n ): for j in range ( 0, i ): a[i,j] = - alpha * ( alpha * beta ) ** ( i - j ) * dp[j] * d[n-1-i] \ / dp[n+1] for j in range ( i, n ): a[i,j] = r8_mop ( i + j ) * dp[i+1] * d[n-j] / ( beta * dp[n+1] ) return a def chow_test ( ): #*****************************************************************************80 # ## CHOW_TEST tests CHOW. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'CHOW_TEST' print ' CHOW computes the CHOW matrix.' m = 5 n = 5 seed = 123456789 alpha, seed = r8_uniform_01 ( seed ) alpha = round ( 50.0 * alpha ) / 5.0 beta, seed = r8_uniform_01 ( seed ) beta = round ( 50.0 * beta ) / 5.0 a = chow ( alpha, beta, m, n ) r8mat_print ( m, n, a, ' CHOW matrix:' ) print '' print 'CHOW_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) chow_test ( ) timestamp ( )